- iOS/Objective-C 元类和类别
- objective-c - -1001 错误,当 NSURLSession 通过 httpproxy 和/etc/hosts
- java - 使用网络类获取 url 地址
- ios - 推送通知中不播放声音
我正在创建一个测试程序,它将创建一个设备和一个大小为 n 的主机数组,然后启动一个内核来创建 n 个分配常量值 0.95 的线程f 到设备数组中的每个位置。完成后,将设备数组复制到主机数组,并对所有条目进行总计,并显示最终总计。
下面的程序似乎适用于大约 6000 万个 float 的数组大小并很快返回正确的结果,但在达到 7000 万个时程序似乎会挂起一段时间并最终返回总数的 NAN 结果。在 6000 万次运行后检查主机阵列显示它正确填充了 0.95f,但在 7000 万次运行后检查它显示它填充了 NAN。据我所知,所有 CUDA 调用都不会返回错误。
我使用的是 2GB GT640m(Compute 3.0),最大块大小为 1024,最大网格尺寸为 2147483647。
我确信有更好的方法可以实现类似的目标,我想听听建议。但我也想了解这里出了什么问题,以便我可以从中吸取教训。
#include "cuda_runtime.h"
#include "device_launch_parameters.h"
#include <stdio.h>
#include <fstream>
void cudaErrorHandler(cudaError_t status)
{
// Cuda call returned an error, just print error for now
if(status != cudaSuccess)
{
printf("Error");
}
}
__global__ void addKernel(float* _Results, int _TotalCombinations)
{
// Get thread Id
unsigned int Id = (blockDim.x * blockDim.y * blockIdx.x) + (blockDim.x * threadIdx.y) + threadIdx.x;
//If the Id is within simulation range, log it
if(Id < _TotalCombinations)
{
_Results[Id] = 0.95f;
}
}
#define BLOCK_DIM_X 32
#define BLOCK_DIM_Y 32
#define BLOCK_SIZE BLOCK_DIM_X * BLOCK_DIM_Y // Statc block size of 32*32 (1024)
#define CUDA_CALL(x) cudaErrorHandler(x)
int main()
{
// The number of simulations to run
unsigned int totalCombinations = 45000000;
int gridsize = 1;
// Work out how many blocks of size 1024 are required to perform all of totalCombinations
for(unsigned int totalsize = gridsize * BLOCK_SIZE; totalsize < totalCombinations;
gridsize++, totalsize = gridsize * BLOCK_SIZE)
;
// Allocate host memory
float* host_results = new float[totalCombinations];
memset(host_results, 0, sizeof(float) * totalCombinations);
float *dev_results = 0;
cudaSetDevice(0);
// Allocate device memory
CUDA_CALL(cudaMalloc((void**)&dev_results, totalCombinations * sizeof(float)));
dim3 grid, block;
block = dim3(BLOCK_DIM_X, BLOCK_DIM_Y);
grid = dim3(gridsize);
// Launch kernel
addKernel<<<gridsize, block>>>(dev_results, totalCombinations);
// Wait for synchronize
CUDA_CALL(cudaDeviceSynchronize());
// Copy device data back to host
CUDA_CALL(cudaMemcpy(host_results, dev_results, totalCombinations * sizeof(float), cudaMemcpyDeviceToHost));
double total = 0.0;
// Total the results in the host array
for(unsigned int i = 0; i < totalCombinations; i++)
total+=host_results[i];
// Print results to screen
printf("Total %f\n", total);
delete[] host_results;
return 0;
}
最佳答案
如您所见,您的错误处理方法不起作用。下面我粘贴了您的代码版本,其中包含我经常使用的错误检查方法。在您的故障点无法正常工作的原因是您的网格大小(您正在启动一维网格)超过了 X 维度中的最大网格大小(默认情况下为 65535,即计算能力高达 2.x)。如果您想利用更大的网格尺寸(2^31 -1 是计算能力 3.0 的限制),您需要使用 -arch=sm_30
开关进行编译。
此处仅供引用的是您的代码版本,其中显示了我经常使用的错误检查方法。
#include <stdio.h>
#include <fstream>
#define cudaCheckErrors(msg) \
do { \
cudaError_t __err = cudaGetLastError(); \
if (__err != cudaSuccess) { \
fprintf(stderr, "Fatal error: %s (%s at %s:%d)\n", \
msg, cudaGetErrorString(__err), \
__FILE__, __LINE__); \
fprintf(stderr, "*** FAILED - ABORTING\n"); \
exit(1); \
} \
} while (0)
__global__ void addKernel(float* _Results, int _TotalCombinations)
{
// Get thread Id
unsigned int Id = (blockDim.x * blockDim.y * blockIdx.x) + (blockDim.x * threadIdx.y) + threadIdx.x;
//If the Id is within simulation range, log it
if(Id < _TotalCombinations)
{
_Results[Id] = 0.95f;
}
}
#define BLOCK_DIM_X 32
#define BLOCK_DIM_Y 32
#define BLOCK_SIZE BLOCK_DIM_X * BLOCK_DIM_Y // Statc block size of 32*32 (1024)
int main()
{
// The number of simulations to run
unsigned int totalCombinations = 65000000;
int gridsize = 1;
// Work out how many blocks of size 1024 are required to perform all of totalCombinations
for(unsigned int totalsize = gridsize * BLOCK_SIZE; totalsize < totalCombinations;
gridsize++, totalsize = gridsize * BLOCK_SIZE)
;
printf("gridsize = %d, blocksize = %d\n", gridsize, BLOCK_SIZE);
// Allocate host memory
float* host_results = new float[totalCombinations];
memset(host_results, 0, sizeof(float) * totalCombinations);
float *dev_results = 0;
cudaSetDevice(0);
// Allocate device memory
cudaMalloc((void**)&dev_results, totalCombinations * sizeof(float));
cudaCheckErrors("cudaMalloc fail");
dim3 grid, block;
block = dim3(BLOCK_DIM_X, BLOCK_DIM_Y);
grid = dim3(gridsize);
// Launch kernel
addKernel<<<gridsize, block>>>(dev_results, totalCombinations);
cudaCheckErrors("kernel fail");
// Wait for synchronize
cudaDeviceSynchronize();
cudaCheckErrors("sync fail");
// Copy device data back to host
cudaMemcpy(host_results, dev_results, totalCombinations * sizeof(float), cudaMemcpyDeviceToHost);
cudaCheckErrors("cudaMemcpy 2 fail");
double total = 0.0;
// Total the results in the host array
for(unsigned int i = 0; i < totalCombinations; i++)
total+=host_results[i];
// Print results to screen
printf("Total %f\n", total);
delete[] host_results;
return 0;
}
关于c++ - CUDA 结果使用非常大的数组返回垃圾,但没有报告错误,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/13532089/
这是我关于 Stack Overflow 的第一个问题,这是一个很长的问题。 tl;dr 版本是:我如何使用 thrust::device_vector如果我希望它存储不同类型的对象 DerivedC
我已使用 cudaMalloc 在设备上分配内存并将其传递给内核函数。是否可以在内核完成执行之前从主机访问该内存? 最佳答案 我能想到的在内核仍在执行时启动 memcpy 的唯一方法是在与内核不同的流
是否可以在同一节点上没有支持 CUDA 的设备的情况下编译 CUDA 程序,仅使用 NVIDIA CUDA Toolkit...? 最佳答案 你的问题的答案是肯定的。 nvcc编译器驱动程序与设备的物
我不知道 cuda 不支持引用参数。我的程序中有这两个函数: __global__ void ExtractDisparityKernel ( ExtractDisparity& es)
我正在使用 CUDA 5.0。我注意到编译器将允许我在内核中使用主机声明的 int 常量。但是,它拒绝编译任何使用主机声明的 float 常量的内核。有谁知道这种看似差异的原因? 例如,下面的代码可以
自从 CUDA 9 发布以来,显然可以将不同的线程和 block 分组到同一组中,以便您可以一起管理它们。这对我来说非常有用,因为我需要启动一个包含多个 block 的内核并等待所有 block 都同
我需要在 CUDA 中执行三线性插值。这是问题定义: 给定三个点向量:x[nx]、y[ny]、z[nz] 和一个函数值矩阵func[nx][ny][nz],我想在 x、y 范围之间的一些随机点处找到函
我认为由于 CUDA 可以执行 64 位 128 位加载/存储,因此它可能具有一些用于加/减/等的内在函数。像 float3 这样的向量类型,在像 SSE 这样更少的指令中。 CUDA 有这样的功能吗
我有一个问题,每个线程 block (一维)必须对共享内存内的一个数组进行扫描,并执行几个其他任务。 (该数组最多有 1024 个元素。) 有没有支持这种操作的好库? 我检查了 Thrust 和 Cu
我对线程的形成和执行方式有很多疑惑。 首先,文档将 GPU 线程描述为轻量级线程。假设我希望将两个 100*100 矩阵相乘。如果每个元素都由不同的线程计算,则这将需要 100*100 个线程。但是,
我正在尝试自己解决这个问题,但我不能。 所以我想听听你的建议。 我正在编写这样的内核代码。 VGA 是 GTX 580。 xxxx >> (... threadNum ...) (note. Shar
查看 CUDA Thrust 代码中的内核启动,似乎它们总是使用默认流。我可以让 Thrust 使用我选择的流吗?我在 API 中遗漏了什么吗? 最佳答案 我想在 Thrust 1.8 发布后更新 t
我想知道 CUDA 应用程序的扭曲调度顺序是否是确定性的。 具体来说,我想知道在同一设备上使用相同输入数据多次运行同一内核时,warp 执行的顺序是否会保持不变。如果没有,是否有任何东西可以强制对扭曲
一个 GPU 中可以有多少个 CUDA 网格? 两个网格可以同时存在于 GPU 中吗?还是一台 GPU 设备只有一个网格? Kernel1>(dst1, param1); Kernel1>(dst2,
如果我编译一个计算能力较低的 CUDA 程序,例如 1.3(nvcc 标志 sm_13),并在具有 Compute Capability 2.1 的设备上运行它,它是否会利用 Compute 2.1
固定内存应该可以提高从主机到设备的传输速率(api 引用)。但是我发现我不需要为内核调用 cuMemcpyHtoD 来访问这些值,也不需要为主机调用 cuMemcpyDtoA 来读取值。我不认为这会奏
我希望对 CUDA C 中负载平衡的最佳实践有一些一般性的建议和说明,特别是: 如果经纱中的 1 个线程比其他 31 个线程花费的时间长,它会阻止其他 31 个线程完成吗? 如果是这样,多余的处理能力
CUDA 中是否有像 opencl 一样的内置交叉和点积,所以 cuda 内核可以使用它? 到目前为止,我在规范中找不到任何内容。 最佳答案 您可以在 SDK 的 cutil_math.h 中找到这些
有一些与我要问的问题类似的问题,但我觉得它们都没有触及我真正要寻找的核心。我现在拥有的是一种 CUDA 方法,它需要将两个数组定义到共享内存中。现在,数组的大小由在执行开始后读入程序的变量给出。因此,
经线是 32 根线。 32 个线程是否在多处理器中并行执行? 如果 32 个线程没有并行执行,则扭曲中没有竞争条件。 在经历了一些例子后,我有了这个疑问。 最佳答案 在 CUDA 编程模型中,warp
我是一名优秀的程序员,十分优秀!