- iOS/Objective-C 元类和类别
- objective-c - -1001 错误,当 NSURLSession 通过 httpproxy 和/etc/hosts
- java - 使用网络类获取 url 地址
- ios - 推送通知中不播放声音
我有一个使用 numpy.memmap
数组操作的 python3
脚本。它将数组写入位于 /tmp
中新生成的临时文件:
import numpy, tempfile
size = 2 ** 37 * 10
tmp = tempfile.NamedTemporaryFile('w+')
array = numpy.memmap(tmp.name, dtype = 'i8', mode = 'w+', shape = size)
array[0] = 666
array[size-1] = 777
del array
array2 = numpy.memmap(tmp.name, dtype = 'i8', mode = 'r+', shape = size)
print('File: {}. Array size: {}. First cell value: {}. Last cell value: {}'.\
format(tmp.name, len(array2), array2[0], array2[size-1]))
while True:
pass
硬盘大小只有250G。尽管如此,它还是能以某种方式在/tmp
中生成10T 的大文件,并且相应的数组似乎仍然可以访问。脚本的输出如下:
File: /tmp/tmptjfwy8nr. Array size: 1374389534720. First cell value: 666. Last cell value: 777
文件确实存在并且显示为10T大:
$ ls -l /tmp/tmptjfwy8nr
-rw------- 1 user user 10995116277760 Dec 1 15:50 /tmp/tmptjfwy8nr
但是,/tmp
的整体大小要小得多:
$ df -h /tmp
Filesystem Size Used Avail Use% Mounted on
/dev/sda1 235G 5.3G 218G 3% /
进程也假装使用10T虚拟内存,这也是不可能的。 top
命令的输出:
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
31622 user 20 0 10.000t 16592 4600 R 100.0 0.0 0:45.63 python3
据我所知,这意味着在调用 numpy.memmap
期间,整个数组所需的内存未分配,因此显示的文件大小是虚假的。这反过来意味着,当我开始逐渐用我的数据填充整个数组时,有时我的程序会崩溃或我的数据会损坏。
确实,如果我在我的代码中引入以下内容:
for i in range(size):
array[i] = i
一段时间后我收到错误:
Bus error (core dumped)
因此,问题:如何在开始时检查,是否真的有足够的内存来存放数据,然后确实为整个数组预留空间?
最佳答案
你要求的数组大小
2 ** 37 * 10 = 1374389534720 elements
'i8'
的 dtype 表示一个 8 字节(64 位)整数,因此您的最终数组的大小为
1374389534720 * 8 = 10995116277760 bytes
或
10995116277760 / 1E12 = 10.99511627776 TB
假设您使用的是相当现代的文件系统,您的操作系统将能够生成几乎任意大的 sparse files ,无论您实际上是否有足够的物理磁盘空间来支持它们。
例如,在我的 Linux 机器上我可以做这样的事情:
# I only have about 50GB of free space...
~$ df -h /
Filesystem Type Size Used Avail Use% Mounted on
/dev/sdb1 ext4 459G 383G 53G 88% /
~$ dd if=/dev/zero of=sparsefile bs=1 count=0 seek=10T
0+0 records in
0+0 records out
0 bytes (0 B) copied, 0.000236933 s, 0.0 kB/s
# ...but I can still generate a sparse file that reports its size as 10 TB
~$ ls -lah sparsefile
-rw-rw-r-- 1 alistair alistair 10T Dec 1 21:17 sparsefile
# however, this file uses zero bytes of "actual" disk space
~$ du -h sparsefile
0 sparsefile
尝试在 np.memmap
文件初始化后调用 du -h
以查看它实际使用了多少磁盘空间。
当您实际开始将数据写入您的 np.memmap
文件时,一切都会正常,直到您超过存储的物理容量,此时该过程将以 Bus 终止错误
。这意味着如果您需要将 < 250GB 的数据写入 np.memmap
数组,那么可能没有问题(实际上这可能还取决于您在数组中写入的位置,以及无论是行专业还是列专业)。
当您创建 memory map ,内核在调用进程的虚拟地址空间中分配一个新的地址 block ,并将它们映射到磁盘上的一个文件。因此,您的 Python 进程使用的虚拟内存量将随着刚刚创建的文件的大小而增加。由于文件也可以是稀疏的,因此虚拟内存不仅可以超过可用 RAM 的总量,而且还可以超过计算机上的总物理磁盘空间。
np.memmap
数组?我假设您想在 Python 中以编程方式执行此操作。
获取可用磁盘空间量。 this previous SO question的答案中给出了多种方法.一种选择是 os.statvfs
:
import os
def get_free_bytes(path='/'):
st = os.statvfs(path)
return st.f_bavail * st.f_bsize
print(get_free_bytes())
# 56224485376
以字节为单位算出数组的大小:
import numpy as np
def check_asize_bytes(shape, dtype):
return np.prod(shape) * np.dtype(dtype).itemsize
print(check_asize_bytes((2 ** 37 * 10,), 'i8'))
# 10995116277760
检查是否 2. > 1.
np.memmap
文件,以保证保留足够的磁盘空间来存储整个阵列?一种可能是使用 fallocate
预先分配磁盘空间,例如:
~$ fallocate -l 1G bigfile
~$ du -h bigfile
1.1G bigfile
您可以从 Python 调用它,例如使用 subprocess.check_call
:
import subprocess
def fallocate(fname, length):
return subprocess.check_call(['fallocate', '-l', str(length), fname])
def safe_memmap_alloc(fname, dtype, shape, *args, **kwargs):
nbytes = np.prod(shape) * np.dtype(dtype).itemsize
fallocate(fname, nbytes)
return np.memmap(fname, dtype, *args, shape=shape, **kwargs)
mmap = safe_memmap_alloc('test.mmap', np.int64, (1024, 1024))
print(mmap.nbytes / 1E6)
# 8.388608
print(subprocess.check_output(['du', '-h', 'test.mmap']))
# 8.0M test.mmap
我不知道使用标准库执行此操作的独立于平台的方法,但有一个 fallocate
Python module on PyPI这应该适用于任何基于 Posix 的操作系统。
关于python - numpy.memmap : bogus memory allocation,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/34023665/
在 ARM 中,内存类型指定为: 正常 设备 强烈有序 在Device type里面,好像这个类型也可以区分 不可共享的设备内存 可共享设备内存 不可共享和可共享设备内存有什么区别?我们如何分别使用这
在 ARM 中,内存类型指定为: 正常 设备 强烈有序 在Device type里面,好像这个类型也可以区分 不可共享的设备内存 可共享设备内存 不可共享和可共享设备内存有什么区别?我们如何分别使用这
This diagram很清楚不同YARN和Spark内存相关设置之间的关系,除了spark.python.worker.memory。 spark.python.worker.memory 如何适应
我正在尝试使用复杂的if-else决策树来实现GLSL片段着色器。不幸的是,着色器编译器很早就失败,并出现“语法错误-内存耗尽”错误。 GLSL中的代码大小或决策树深度是否有任何限制?有什么建议如何克
什么是“标记内存”,它如何帮助减小程序大小? 最佳答案 您可能指的是 tagged union ,或更具体地说是硬件实现,如 LISP 机器中使用的标记架构。基本上是一种存储具有类型信息的数据的方法。
我的内存有问题。我不明白为什么当我的程序长时间运行时 Go 使用越来越多的内存(从不释放它)。 第一次分配后,程序使用了将近 9 MB 的内存。然后在 12 小时后,它开始以指数方式使用更多内存,直到
在 Windows 机器上,MATLAB 用户可以使用 memory或 feature memstats命令。但是,这些都不能在机器上工作,失败如下: >> memory??? Error using
引导 Linux 内核时,可以在 RAM 中加载 initramfs 存档和 DTB 文件,并将这些物理地址指定给内核。例如,使用 U-Boot,您可以执行以下操作: bootz 0x80008000
我正在学习虚拟内存的概念,但是这个问题让我困惑了一段时间。由于大多数现代计算机都使用虚拟内存,因此当程序正在执行时,操作系统应该在 RAM 和磁盘之间将数据分页进出。但为什么我们仍然遇到“内存不足”的
我在 Colab Pro+(使用高 RAM 选项)上运行神经网络时发现了这个问题。 运行时错误:CUDA 内存不足。尝试分配 8.00 GiB(GPU 0;15.90 GiB 总容量;12.04 Gi
当我在任何地方阅读基于操作系统的书籍时,考虑到时间限制和开销很高,从内存和 I\O(子系统)获取数据是昂贵的,这就是为什么在某些硬件制造商中提供一些其他方式来访问它们,如ARM7 some ISAs像
据我所知,ADS v.10 尝试将查询结果保留在内存中,直到它变得非常大。对于 __output 表和临时表也应该如此。当结果变大时,交换声明。 问题是为查询、 worker 等设置了什么内存限制?可
序言 我正在写一个小演示文稿来列出使用 Docker 时的一些“陷阱”,我也遇到了自己的一个问题。 在解释让 Docker 在没有内存限制的情况下运行的危险时,我发现它的行为不像我预期的那样。 我使用
我们有一个 ASP.NET 项目(40 个左右的 Web 表单、50 个表、相当标准的 IO 内容,并尽可能减少),很快需要部署。系统上大约有 100 个并发用户,但任何时候只有大约 20 个用户在使
我在 dotcloud 上使用 redis 内存存储,但尽管 key 已过期,但它的 used_memory 再也不会下降。从 redis-cli 使用 flushdb 或 flushall 不会导致
我使用的是 Xcode 10.2.1 和 macOS Catalina Developer Beta 2。每当我尝试使用内存图调试器时,我都会收到此错误: Memory Graph Debugger:
所以我一直在寻找这个问题的解决方案有一段时间了。我编写了一个程序来从两个单独的文本文件中获取数据,对其进行解析,然后输出到另一个文本文件和一个 ARFF 文件以供 Weka 分析。我遇到的问题是我编写
对不起,我对 erlang 文档中的以下描述不太清楚: erlang:memory() -> [{Type, Size}] with Type: "total" means: "The total a
在查看示例合约时,有时会在带有“内存”的方法中声明数组,有时则不会。有什么区别? 最佳答案 如果没有内存关键字,Solidity会尝试在存储中声明变量。 首席 Solidity 开发者 chriset
我不明白Matlab并行计算工具箱中的parfor cicle是如何与内存一起工作的:我读到它在所有worker之间共享内存(然后我认为每个worker(核心)都可以访问感兴趣的内存位置而无需制作本地
我是一名优秀的程序员,十分优秀!