- iOS/Objective-C 元类和类别
- objective-c - -1001 错误,当 NSURLSession 通过 httpproxy 和/etc/hosts
- java - 使用网络类获取 url 地址
- ios - 推送通知中不播放声音
考虑一个假设的元函数 arity
,它将任何元函数作为参数并返回其实际元数。
以下明显的方法是不可能的,因为根据语言标准命名的内部模板模板参数仅在本地定义。
template<template<typename... args> class f>
struct arity
{
static constexpr std::size_t value = sizeof...(args); //ERROR: undefined 'args'
};
即使是详尽的特化也不是一个替代方案,因为采用另一个模板类型的模板类型可能不会就内部模板的参数数量进行部分特化。
这让我想到了这个问题,我担心这个问题的答案是否定的。
Is there any reasonable way to introspect the actual arity of a template type?
我不希望 arity
的实际实现采用模板类型的形式,例如显而易见的方法,即任何可能是在编译时计算是可接受的“合理”解决方案,只要它不依赖于实际参数。
注意:为简单起见,假设只允许非可变元函数作为 arity
的参数。
最佳答案
template<class...> struct foo;
template<class X> struct foo<X>:std::true_type {};
template<class X, class Y, class Z> struct foo<X,Y,Z>:std::false_type {};
在任何朴素的模式匹配下,foo
都具有无限的空灵性。
在实践中,它的通风度为 1
或 3
。
一般来说,“这个模板的空洞是什么”这个问题是错误的问题。相反,“这些类型可以传递给这个模板”,或者“这些类型中有多少可以传递给这个模板”更有用。
寻找模板的空气性就像想要从可调用对象中提取签名一样。如果你知道你将如何调用一个对象,问“我可以这样调用它吗?怎么样?”是合理的;问“告诉我怎么称呼你”几乎总是被误导。
template<class...>struct types{using type=types;};
template<class types>struct types_length;
template<class...Ts>struct types_length<types<Ts...>>:
std::integral_constant<size_t, sizeof...(Ts)>
{};
template<class...>struct voider{using type=void;};
template<class...Ts>using void_t=typename voider<Ts...>::type;
namespace details {
template<template<class...>class Z, class types, class=void>
struct can_apply : std::false_type {};
template<template<class...>class Z, class...Ts>
struct can_apply<Z,types<Ts...>,void_t<Z<Ts...>>>: std::true_type {};
};
template<template<class...>class Z, class...Ts>
struct can_apply : details::can_apply<Z,types<Ts...>> {};
以上回答了“我可以将某些类型应用到模板中吗”这个问题。
现在,您可以将一组类型中最长的前缀应用于模板:
template<class T>struct tag{using type=T;};
namespace details {
template<class types, class=types<>>
struct pop_back {};
template<class T0, class...rhs>
struct pop_back<types<T0>, types<rhs...>>:types<rhs...> {};
template<class T0, class...Ts, class...rhs>
struct pop_back<types<T0, Ts...>, types<rhs...>>:
pop_back<types<T0,Ts...>,types<rhs...,T0>>
{};
template<class types>
using pop_back_t = typename pop_back<types>::type;
}
template<class types>
using pop_back = details::pop_back_t<types>;
namespace details {
template<template<class...>class Z, class types, class=void>
struct longest_prefix {};
template<template<class...>class Z, class...Ts>
struct longest_prefix<
Z,types<Ts...>,
std::enable_if_t<can_apply<Z,Ts...>>
>:
types<Ts...>
{};
template<template<class...>class Z,class T0, class...Ts>
struct longest_prefix<
Z,types<T0, Ts...>,
std::enable_if_t<!can_apply<Z, T0, Ts...>>
>:
longest_prefix<Z,pop_back_t<types<T0,Ts...>>>
{};
}
template<template<class...>class Z, class...Ts>
using longest_prefix =
typename details::longest_prefix<Z, types<Ts...>>::type;
namespace details {
template<class types>
struct pop_front;
template<>
struct pop_front<types<>> {};
template<class T0, class...Ts>
struct pop_front<types<T0,Ts...>>:types<Ts...>{};
template<class types>
using pop_front_t=typename pop_front<types>::type;
}
可以编写类似的代码,采用类型束和模板,并重复切掉可以传递给模板的类型束的最长前缀。
(以上代码肯定有错别字)
template<class types>
using pop_front = details::pop_front_t<types>;
template<size_t n, template<class...>class Z, class T>
struct repeat : repeat< n-1, Z, Z<T> > {};
template<template<class...>class Z, class T>
struct repeat<0,Z,T> : tag<T> {};
template<size_t n, template<class...>class Z, class T>
using repeat_t = typename repeat<n,Z,T>::type;
template<template<class...>class Z, class types>
using longest_prefix_tail =
repeat_t<
types_length<longest_prefix<Z,Ts...>>{},
pop_front,
types<Ts...>
>;
现在我们可以使用一个模板和一堆类型,并构建一个类型束,该束是将模板依次应用于这束类型中最长的前缀。
如果我们疯了,我们甚至可以做回溯,这样如果我们的模板有 2 或 3 个元素,我们给它 4 个,它就不会尝试给它 3 个,然后在剩下 1 个元素时失败 --相反,它可以找到每个应用程序的最长前缀,允许尾部被类似地捆绑。
关于c++ - 如何反省可变参数模板模板参数的多样性?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/29475427/
为什么禁用类型像 type t = A of int | B of string * mutable int 虽然允许此类类型: type t = A of int | B of string * i
我正在寻找一种类似结构的数据结构,我可以从中创建多个实例并具有某种类型提示而不是不可变的。 所以我有这样的东西: class ConnectionConfig(NamedTuple): nam
我需要转到引用的结构: class SearchKnot { var isWord : Bool = false var text : String = "" var to
如sec 10.4.3中所述 当控制进入执行时,执行以下步骤 功能对象F(调用者)中包含的功能代码的上下文 提供thisArg,而调用方提供argumentsList: 如
i make a game that start display Activity indicator And activity indicator bottom display UiLable wi
编辑:我在这里不断获得支持。只是为了记录,我认为这不再重要。自从我发布它以来我就不再需要它了。 我想在 Scala 中执行以下操作... def save(srcPath: String, destP
使用可变对象作为 Hashmap 键是一种不好的做法吗?当您尝试使用已修改足以更改其哈希码的键从 HashMap 中检索值时,会发生什么? 例如,给定 class Key { int a; /
如果您在Kotlin中访问List类型的Java值,则将获得(Mutable)List!类型。 例如。: Java代码: public class Example { public stati
我编写了 str 类(内置)的以下扩展,以便执行以下操作:假设我有字符串 "Ciao" ,通过做"Ciao" - "a"我想要的结果是字符串 "Cio" 。这是执行此操作的代码,并且运行良好: cla
使用可变对象作为 Hashmap 键是一种不好的做法吗?当您尝试使用已修改足以更改其哈希码的键从 HashMap 中检索值时,会发生什么? 例如,给定 class Key { int a; /
我正在为我的公司设计一个数据库来管理商业贷款。每笔贷款都可以有担保人,可以是个人或公司,在借款业务失败时作为财务支持。 我有 3 个表:Loan、Person 和 Company,它们存储明显的信息。
我使用二进制序列化从 C# 类中保存 F# 记录。一切正常: F#: type GameState = { LevelStatus : LevelStatus
import javax.swing.JOptionPane; public class HW { public static void main(String[] args) { Strin
使用 flatbuffer mutable 有多少性能损失? 是否“正确”使用 FlatBuffers 来拥有一个应该可编辑的对象/结构(即游戏状态) 在我的示例中,我现在有以下类: class Ga
std::function create_function (args...) { int x = initial_value (args...); return [x] () mut
我需要在 for 循环中找到用户输入的字符。我通常会这样做 如果(句子[i] == 'e') 但是因为在这里,'e' 将是一个单字母字符变量,我不知道如何获取要比较的值。我不能只输入 if (sent
我有一个这样的算法: let seed: Foo = ... let mut stack: Vec = Vec::new(); stack.push(&seed); while let Some(ne
这个问题可能看起来非常基础,但我很难弄清楚如何做。我有一个整数,我需要使用 for 循环来循环整数次。 首先,我尝试了—— fn main() { let number = 10; // An
如果我有以下结构: struct MyStruct { tuple: (i32, i32) }; 以及以下函数: // This will not compile fn function(&mut s
我希望在每个 session 的基础上指定列的默认值。下面的脚本不起作用,但描述了我想如何使用它。我目前使用的是 MySQL 5.5.28,但如果需要可以升级。 CREATE TABLE my_tbl
我是一名优秀的程序员,十分优秀!