作者热门文章
- iOS/Objective-C 元类和类别
- objective-c - -1001 错误,当 NSURLSession 通过 httpproxy 和/etc/hosts
- java - 使用网络类获取 url 地址
- ios - 推送通知中不播放声音
在gcc 4.5.1 (Ubuntu 10.04, intel core2duo 3.0 Ghz)下考虑这段代码这只是 2 个测试,第一个是我直接调用 virtual fucnion,第二个是通过 Wrapper 类调用它:
测试.cpp
#define ITER 100000000
class Print{
public:
typedef Print* Ptr;
virtual void print(int p1, float p2, float p3, float p4){/*DOES NOTHING */}
};
class PrintWrapper
{
public:
typedef PrintWrapper* Ptr;
PrintWrapper(Print::Ptr print, int p1, float p2, float p3, float p4) :
m_print(print), _p1(p1),_p2(p2),_p3(p3),_p4(p4){}
~PrintWrapper(){}
void execute()
{
m_print->print(_p1,_p2,_p3,_p4);
}
private:
Print::Ptr m_print;
int _p1;
float _p2,_p3,_p4;
};
Print::Ptr p = new Print();
PrintWrapper::Ptr pw = new PrintWrapper(p, 1, 2.f,3.0f,4.0f);
void test1()
{
//-------------test 1-------------------------
for (auto var = 0; var < ITER; ++var)
{
p->print(1, 2.f,3.0f,4.0f);
}
}
void test2()
{
//-------------test 2-------------------------
for (auto var = 0; var < ITER; ++var)
{
pw->execute();
}
}
int main()
{
test1();
test2();
}
我用 gprof 和 objdump 分析了它:
g++ -c -std=c++0x -pg -g -O2 test.cpp
objdump -d -M intel -S test.o > objdump.txt
g++ -pg test.o -o test
./test
gprof test > gprof.output
在 gprof.output 中,我观察到 test2() 比 test1() 花费更多时间,但我无法解释它
Each sample counts as 0.01 seconds.
% cumulative self self total
time seconds seconds calls ms/call ms/call name
49.40 0.41 0.41 1 410.00 540.00 test2()
31.33 0.67 0.26 200000000 0.00 0.00 Print::print(int, float, float, float)
19.28 0.83 0.16 1 160.00 290.00 test1()
0.00 0.83 0.00 1 0.00 0.00 global constructors keyed to p
objdump.txt 中的汇编代码对我也没有帮助:
//-------------test 1-------------------------
for (auto var = 0; var < ITER; ++var)
15: 83 c3 01 add ebx,0x1
{
p->print(1, 2.f,3.0f,4.0f);
18: 8b 10 mov edx,DWORD PTR [eax]
1a: c7 44 24 10 00 00 80 mov DWORD PTR [esp+0x10],0x40800000
21: 40
22: c7 44 24 0c 00 00 40 mov DWORD PTR [esp+0xc],0x40400000
29: 40
2a: c7 44 24 08 00 00 00 mov DWORD PTR [esp+0x8],0x40000000
31: 40
32: c7 44 24 04 01 00 00 mov DWORD PTR [esp+0x4],0x1
39: 00
3a: 89 04 24 mov DWORD PTR [esp],eax
3d: ff 12 call DWORD PTR [edx]
//-------------test 2-------------------------
for (auto var = 0; var < ITER; ++var)
65: 83 c3 01 add ebx,0x1
~PrintWrapper(){}
void execute()
{
m_print->print(_p1,_p2,_p3,_p4);
68: 8b 10 mov edx,DWORD PTR [eax]
6a: 8b 70 10 mov esi,DWORD PTR [eax+0x10]
6d: 8b 0a mov ecx,DWORD PTR [edx]
6f: 89 74 24 10 mov DWORD PTR [esp+0x10],esi
73: 8b 70 0c mov esi,DWORD PTR [eax+0xc]
76: 89 74 24 0c mov DWORD PTR [esp+0xc],esi
7a: 8b 70 08 mov esi,DWORD PTR [eax+0x8]
7d: 89 74 24 08 mov DWORD PTR [esp+0x8],esi
81: 8b 40 04 mov eax,DWORD PTR [eax+0x4]
84: 89 14 24 mov DWORD PTR [esp],edx
87: 89 44 24 04 mov DWORD PTR [esp+0x4],eax
8b: ff 11 call DWORD PTR [ecx]
我们如何解释这种差异?
最佳答案
在test2()
中,程序必须首先从堆中加载pw
,然后调用pw->execute()
(这会导致调用开销),然后加载 pw->m_print
以及 _p1
到 _p4
参数,然后加载 pw 的 vtable 指针
,然后为pw->Print
加载vtable槽,然后调用pw->Print
。因为编译器无法看穿虚拟调用,所以它必须假定所有这些值在下一次迭代中都已更改,并重新加载它们。
在test()
中,参数在代码段中内联,我们只需要加载p
、vtable指针和vtable槽。我们以这种方式节省了五次负载。这很容易解释时差。
简而言之 - pw->m_print
和 pw->_p1
到 pw->_p4
的负载是这里的罪魁祸首。
关于C++ : difference of execution time between two call of a virtual function,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/8405937/
我是一名优秀的程序员,十分优秀!