- iOS/Objective-C 元类和类别
- objective-c - -1001 错误,当 NSURLSession 通过 httpproxy 和/etc/hosts
- java - 使用网络类获取 url 地址
- ios - 推送通知中不播放声音
我正在尝试基于日志文件构建决策树。一些特征集很大,包含数千个唯一值。我正在尝试在 Java 中使用管道和数据框的新习语。我为每个分类特征列构建了一个包含多个 StringIndexer 管道阶段的管道。然后我使用 VectorAssembler 创建一个特征向量。在 VectorAssembler 阶段之后,生成的数据框对我来说看起来很完美。我的管道看起来大致像
StringIndexer->StringIndexer->StringIndexer->VectorAssembler->DecisionTreeClassifier
但是我得到以下错误:
DecisionTree requires maxBins (= 32) to be at least as large as the number of values in each categorical feature, but categorical feature 5 has 49 values. Considering remove this and other categorical features with a large number of values, or add more training examples.
我可以使用 Normalizer 解决这个问题,但是生成的决策树无法满足我的需要,因为我需要生成具有原始特征值的 DSL 决策树。我无法手动设置 maxBins,因为整个管道是一起执行的。我希望生成的决策树具有 StringIndexer 生成的值(例如 Feature 5 <= 132)。此外,但不太重要的是,我希望能够为这些功能指定我自己的名称(例如,而不是“功能 5”,说“域”)
最佳答案
DecisionTree 算法采用单个 maxBins 值来决定要采用的拆分数。默认值为 (=32)。 maxBins 应该大于或等于分类特征的最大类别数。由于您的特征 5 有 49 个不同的值,您需要将 maxBins 增加到 49 或更大。
DecisionTree 算法有几个超参数,根据您的数据调整它们可以提高准确性。您可以使用 Spark 的交叉验证框架进行此调整,该框架会自动测试超参数网格并选择最佳参数。
这是 python 测试 3 maxBins [49, 52, 55] 的例子
dt = DecisionTreeClassifier(maxDepth=2, labelCol="indexed")
paramGrid = ParamGridBuilder().addGrid(dt.maxBins, [49, 52, 55]).addGrid(dt.maxDepth, [4, 6, 8]).addGrid(rf.impurity, ["entropy", "gini"]).build()
pipeline = Pipeline(stages=[labelIndexer, typeIndexer, assembler, dt])
关于java - 管道中的 Spark MLLib 2.0 分类特征,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/38767786/
使用 Spark1.6.0 MLLib,我将构建一个模型(如 RandomForest)并保存到 hdfs,然后可以从 hdfs 加载随机森林模型以在没有 SparkContext 的情况下进行预测。
我在某处读到 MLlib 本地向量/矩阵目前正在包装 Breeze 实现,但是将 MLlib 转换为 Breeze 向量/矩阵的方法是 org.apache.spark.mllib 范围内的私有(pr
我正在尝试在 Web 项目中使用 spark mllib.jar。我下载了 spark-1.1.0-bin-hadoop2.4 并解压。找到如下jar: datanucleus-api-jdi-3.2
在尝试使用 Python 使用 Spark mllib 的 LinearRegressionWithSGD 进行线性回归时,我一直得到非常糟糕的结果。 我调查了类似的问题,如下所示: Spark -
我使用 mllib 创建了 Apache Spark 机器学习管道。评估器结果是一个带有“概率”列的 DataFrame,它是概率的 mllib 向量(类似于 scikit-learn 中的 pred
我正在尝试使用 Spark 的 MLlib 在 Java 上实现 KMeans,我偶然发现了一个问题,那就是,尽管我导入了正确的 jar,但我的编译器无法识别这一行 // Cluster the da
我正在使用 Scala 对其进行编程,但语言在这里并不重要。 在这种情况下,隐式反馈协作过滤器 (ALS.trainImplicit) 的输入是产品的 View : Rating("user1", "
假设我有一个Array[RDD]类型的对象data。我想学习此对象中每个 RDD 上的独立机器学习模型。例如,对于随机森林: data.map{ d => RandomForest.trainRegr
我想运行 SVM 回归,但输入格式有问题。现在,我为一位客户设置的训练和测试集如下所示: 1 '12262064 |f offer_quantity:1 has_bought_brand_compan
我在 Spark 控制台中尝试了以下代码 import org.apache.spark.mllib.linalg.{Matrix, Matrices, DenseMatrix} val dm: De
Spark 2.0.0 中是否有任何预构建的异常值检测算法/四分位距识别方法?我在这里找到了一些代码,但我认为这在spark2.0.0中尚不可用 谢谢 最佳答案 如果您没有找到预构建的方法,您可以执行
我正在使用 pySpark MLlib 和开箱即用的 ALS 方法进行协同过滤。只是想知道,Spark 是否提供了其他一些进行过滤(用于计算距离)的方法,例如 Pearson 或 Cosine 的?可
您好,我是 spark mllib 的新手。我已经有一个 r 模型。我正在尝试使用 spark mllib 的相同模型。这里是 R 模型代码。 R 代码。 delhi data = sc.textF
我正在学习如何将机器学习与 Spark MLLib 结合使用,目的是对推文进行情感分析。我从这里得到了一个情绪分析数据集: http://thinknook.com/wp-content/upload
我有一个具有这种结构的小文件“naivebayetest.txt” 10 1:1 20 1:2 20 1:2 根据这些数据,我试图对 vector (1) 进行分类。如果我正确理解贝叶斯 (1) 的标
“spark mllib”提供的机器学习算法,如 naive byes、random forest 能否在 spark 集群中以并行模式运行?或者我们需要更改代码?请提供一个并行运行的例子?不确定 M
我正在使用 Spark 1.5.0 MLlib 随机森林算法(Scala 代码)进行二分类。由于我使用的数据集高度不平衡,因此多数类以 10% 的采样率进行下采样。 是否可以在 Spark 随机森林训
我正在使用 Spark MLlib 1.4.1 创建决策树模型。现在我想从决策树中提取规则。 如何提取规则? 最佳答案 您可以通过调用 model.toDebugString() 以字符串形式获取完整
我正在尝试使用 MlLib 进行协作过滤。 我在 Apache Spark 1.0.0 中运行 Scala 程序时遇到以下错误。 14/07/15 16:16:31 WARN NativeCod
我正在尝试在 Spark 中实现的协作过滤算法,并遇到以下问题: 假设我用以下数据训练模型: u1|p1|3 u1|p2|3 u2|p1|2 u2|p2|3 现在,如果我用以下数据测试它: u1|p1
我是一名优秀的程序员,十分优秀!