gpt4 book ai didi

java - 并行与串行实现解释

转载 作者:塔克拉玛干 更新时间:2023-11-02 19:34:25 28 4
gpt4 key购买 nike

我已经实现了使用 jacobi 方法求解线性系统的串行和并行算法。两种实现收敛并给出正确的解决方案。

我在理解上有困难:

  1. 与串行相比,并行实现如何在如此少的迭代次数后收敛(两者都使用相同的方法)。我是否面临一些我不知道的并发问题?
  2. 在并行实现 (6,7) 中,每次运行的迭代次数如何变化?

谢谢!

程序输出:

Mathematica solution: {{-1.12756}, {4.70371}, {-1.89272}, {1.56218}}
Serial: iterations=7194 , error=false, solution=[-1.1270591, 4.7042074, -1.8922218, 1.5626835]
Parallel: iterations=6 , error=false, solution=[-1.1274619, 4.7035804, -1.8927546, 1.5621948]

代码:

主要

import java.util.Arrays;

public class Main {

public static void main(String[] args) {

Serial s = new Serial();
Parallel p = new Parallel(2);

s.solve();
p.solve();

System.out.println("Mathematica solution: {{-1.12756}, {4.70371}, {-1.89272}, {1.56218}}");
System.out.println(String.format("Serial: iterations=%d , error=%s, solution=%s", s.iter, s.errorFlag, Arrays.toString(s.data.solution)));
System.out.println(String.format("Parallel: iterations=%d , error=%s, solution=%s", p.iter, p.errorFlag, Arrays.toString(p.data.solution)));


}

}

数据

public class Data {

public float A[][] = {{2.886139567217389f, 0.9778259187352214f, 0.9432146432722157f, 0.9622157488990459f}
,{0.3023479007910952f,0.7503803506938734f,0.06163831478699766f,0.3856445043958068f}
,{0.4298384105199724f, 0.7787439716945019f, 1.838686110345417f, 0.6282668788698587f}
,{0.27798718418255075f, 0.09021764079496353f, 0.8765867330141233f, 1.246036349549629f}};

public float b[] = {1.0630309381779384f,3.674438173599066f,0.6796639099285651f,0.39831385324794155f};
public int size = A.length;
public float x[] = new float[size];
public float solution[] = new float[size];


}

并行

import java.util.Arrays;

public class Parallel {


private final int workers;
private float[] globalNorm;

public int iter;
public int maxIter = 1000000;
public double epsilon = 1.0e-3;
public boolean errorFlag = false;

public Data data = new Data();

public Parallel(int workers) {
this.workers = workers;
this.globalNorm = new float[workers];
Arrays.fill(globalNorm, 0);
}

public void solve() {

JacobiWorker[] threads = new JacobiWorker[workers];
int batchSize = data.size / workers;

float norm;

do {


for(int i=0;i<workers;i++) {
threads[i] = new JacobiWorker(i,batchSize);
threads[i].start();
}

for(int i=0;i<workers;i++)
try {

threads[i].join();

} catch (InterruptedException e) {

e.printStackTrace();
}

// At this point all worker calculations are done!

norm = 0;

for (float d : globalNorm) if (d > norm) norm = d;

if (norm < epsilon)
errorFlag = false; // Converged
else
errorFlag = true; // No desired convergence

} while (norm >= epsilon && ++iter <= maxIter);

}

class JacobiWorker extends Thread {

private final int idx;
private final int batchSize;

JacobiWorker(int idx, int batchSize) {
this.idx = idx;
this.batchSize = batchSize;
}

@Override
public void run() {

int upper = idx == workers - 1 ? data.size : (idx + 1) * batchSize;

float localNorm = 0, diff = 0;

for (int j = idx * batchSize; j < upper; j++) { // For every
// equation in batch

float s = 0;
for (int i = 0; i < data.size; i++) { // For every variable in
// equation

if (i != j)
s += data.A[j][i] * data.x[i];

data.solution[j] = (data.b[j] - s) / data.A[j][j];

}


diff = Math.abs(data.solution[j] - data.x[j]);
if (diff > localNorm) localNorm = diff;
data.x[j] = data.solution[j];


}


globalNorm[idx] = localNorm;

}

}

}

连续剧

public class Serial {

public int iter;
public int maxIter = 1000000;
public double epsilon = 1.0e-3;
public boolean errorFlag = false;

public Data data = new Data();

public void solve() {

float norm,diff=0;

do {


for(int i=0;i<data.size;i++) {

float s=0;
for (int j = 0; j < data.size; j++) {
if (i != j)
s += data.A[i][j] * data.x[j];
data.solution[i] = (data.b[i] - s) / data.A[i][i];
}
}


norm = 0;

for (int i=0;i<data.size;i++) {
diff = Math.abs(data.solution[i]-data.x[i]); // Calculate convergence
if (diff > norm) norm = diff;
data.x[i] = data.solution[i];
}


if (norm < epsilon)
errorFlag = false; // Converged
else
errorFlag = true; // No desired convergence


} while (norm >= epsilon && ++iter <= maxIter);

}
}

最佳答案

我认为这是一个实现问题,而不是并行化问题。看看 Parallel p = new Parallel(1);

会发生什么
Mathematica solution: {{-1.12756}, {4.70371}, {-1.89272}, {1.56218}}
Serial: iterations=7194 , error=false, solution=[-1.1270591, 4.7042074, -1.8922218, 1.5626835]
Parallel: iterations=6 , error=false, solution=[-1.1274619, 4.7035804, -1.8927546, 1.5621948]

事实证明,您的第二个实现与第一个实现并不完全相同。

我将其添加到您的并行版本中,并且它以相同的迭代次数运行。

for (int i = idx * batchSize; i < upper; i++) {
diff = Math.abs(data.solution[i] - data.x[i]); // Calculate
// convergence
if (diff > localNorm)
localNorm = diff;
data.x[i] = data.solution[i];
}
}

关于java - 并行与串行实现解释,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/9673043/

28 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com