- iOS/Objective-C 元类和类别
- objective-c - -1001 错误,当 NSURLSession 通过 httpproxy 和/etc/hosts
- java - 使用网络类获取 url 地址
- ios - 推送通知中不播放声音
我使用 CoreText
和 kCTJustifiedTextAlignment
在图像周围 float 一些文本以显示对齐的文本 - 但是图像更大,文本区域更小,空白更少 CoreText
不仅加宽了空格,还加宽了字母之间的边距。
看这里:
这有时看起来真的很糟糕,所以我搜索了一些替代方案或变通方法,但只找到建议自己完成,方法是在每个空格后添加更多空格以匹配宽度并使用 kCTLeftTextAlignment
。这听起来像是有很多圈套要处理,所以我想,我想在这里问一下,也许有人知道如何处理这个问题。
最佳答案
这里的基本问题是“那么你想要什么?”另一个明显的答案是“充分证明,除非……我要制定一些规则,就像只有一个词一样。”
如果您想要那种控制,那么您需要下降到 CTLine
级别并仅在您需要时才创建对齐线。假设您已经对 CoreText 有所了解,那么这段代码应该很有意义。仅当它不是段落的最后一行时才对齐该行。
CFIndex lineCharacterCount = CTTypesetterSuggestLineBreak(self.typesetter, startIndex, boundsWidth);
CTLineRef line = CTTypesetterCreateLine(self.typesetter, CFRangeMake(startIndex, lineCharacterCount));
// Fetch the typographic bounds
CTLineGetTypographicBounds(line, &(*ascent), &(*descent), &(*leading));
// Full-justify all but last line of paragraphs
NSString *string = self.attributedString.string;
NSUInteger endingLocation = startIndex + lineCharacterCount;
if (endingLocation >= string.length || [string characterAtIndex:endingLocation] != '\n') {
CTLineRef justifiedLine = CTLineCreateJustifiedLine(line, 1.0, boundsWidth);
CFRelease(line);
line = justifiedLine;
}
因此我们根据CTTypesetter
建议创建一个普通的CTLine
。然后我们应用一些规则(只有一个词?不是段落的结尾?随便。)如果我们通过,那么我们创建一个新的,对齐的行。 (我不确定为什么 CTTypesetter
不能自己创建对齐线。)
有关此的完整示例,请参阅 PinchText .它比您需要的复杂得多,但它展示了如何使用大量注释进行所有布局。
关于iOS:更好地证明 CoreText,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/14872749/
(这不是关于定理证明,而是关于实践中的测试,例如 quickCheck) 让f一些通用函数 f :: RESTRICTIONS => GENERICS 具有一些“理想的”属性(即不是 hack,是不可
给定数组 arr 和索引数组 ind,以下算法就地重新排列 arr 以满足给定的索引: function swap(arr, i, k) { var temp = arr[i]; arr[i]
我有兴趣创建一个具有运行时间和空间限制的简单数组问题。看来我找到了解决问题的方法。请阅读以下java代码中问题的初始描述注释: /* * Problem: Given two integer ar
我是 isabelle 的新手,并试图证明以下简单的不等式: lemma ineq: "(a::real) > 0 ⟹ a 0 ⟹ b 0" proof have "1/a + 1/b >
是否有任何理论说缓存应该比文件系统更快? 我认为,由于文件系统也使用缓存,因此没有科学证据表明当文件系统的概念有些松散时,我们应该将内容从文件系统移动到诸如 memcache 之类的缓存中——比如下载
我正在做一个证明,我的一个子目标看起来有点像这样: Goal forall (a b : bool) (p: Prop) (H1: p -> a = b) (H2: p), neg
我有定义的归纳类型: Inductive InL (A:Type) (y:A) : list A -> Prop := | InHead : forall xs:list A, InL y (co
我知道 CRC 是一个线性函数,这意味着 CRC(x xor y) = CRC(x) xor CRC(y),但我不知道如何证明 CRC 的这个属性。 有谁有想法吗? 非常感谢! 最佳答案 这通常不是真
我是 Coq 的初学者。 虽然计算机为我验证了证明令人满意,但众所周知,满足 Coq 的证明对人类来说难以阅读。这是一个简单的例子,假设您没有看到任何评论: Theorem add_comm : fo
我试图了解是什么决定了类型参数是否必须是标称的。 虽然 GADT 和类型家族在某种意义上看起来不同,但它们不是“简单容器”,因为它们的实例定义可以“查看”它们的参数,但简单类型是否可以明显需要名义参数
我想使用 function 关键字定义来证明函数定义的正确性。以下是自然数的通常归纳定义上的加法函数的定义: theory FunctionDefinition imports Main begin
我定义了一个 Sygma-Type,如下所示: { R : nat -> nat -> bool | Reflexive R } 我有两个元素 r1 r2 : { R : nat -> nat ->
我有以下数据: new_pairs x y Freq start.latittude start.longitude start.station end.la
出于教育目的,我一直试图通过使用各种语言扩展和单例类型,在 Haskell 中重建《Type-Driven Development with Idris》(即 RemoveElem.idr )一书中的
我定义了一个 Sygma-Type,如下所示: { R : nat -> nat -> bool | Reflexive R } 我有两个元素 r1 r2 : { R : nat -> nat ->
我正在使用Ax DevTools,并且试图弄清楚如何使用相同的构建信息标记多个扫描。现在,我的测试运行如下: class MyTestCase : XCTestCase { func myTest
我正在尝试证明一个函数的正确性,该函数检查数组是否按递增/递减顺序排序或未排序。行为是返回 -1,如果按降序排序,1,如果按升序排序,大小为 1,或包含相同的值,0,如果没有已排序或为空。运行:Fra
我试图证明 Z3(Microsoft 的 SMT 求解器)中的一个归纳事实。我知道 Z3 通常不提供此功能,如 Z3 guide 中所述。 (第 8 节:数据类型),但是当我们限制要证明事实的域时,这
问题已编辑: 如代码中所述,HashSet 和 HashMap 是快速失败的(但这不是保证): void goHashSet() { Set set = new HashSet();
我试图使导航栏中的链接延伸到导航栏的全长。我环顾四周,发现了一些有用的信息,但无法使其正常工作 HTML: To
我是一名优秀的程序员,十分优秀!