gpt4 book ai didi

java - DrawMatching between two images - 图像识别

转载 作者:塔克拉玛干 更新时间:2023-11-02 08:43:05 35 4
gpt4 key购买 nike

我试图显示两个图像之间的匹配关键点(一个是从我的相机捕获的,另一个是从数据库捕获的)

任何人都可以帮助我在我的代码中编写 DrawMatches 函数以显示 2 个图像之间的匹配线。

这是我的代码:

public final class ImageDetectionFilter{

// Flag draw target Image corner.
private boolean flagDraw ;

// The reference image (this detector's target).
private final Mat mReferenceImage;

// Features of the reference image.
private final MatOfKeyPoint mReferenceKeypoints = new MatOfKeyPoint();

// Descriptors of the reference image's features.
private final Mat mReferenceDescriptors = new Mat();

// The corner coordinates of the reference image, in pixels.
// CvType defines the color depth, number of channels, and
// channel layout in the image. Here, each point is represented
// by two 32-bit floats.
private final Mat mReferenceCorners = new Mat(4, 1, CvType.CV_32FC2);

// Features of the scene (the current frame).
private final MatOfKeyPoint mSceneKeypoints = new MatOfKeyPoint();
// Descriptors of the scene's features.
private final Mat mSceneDescriptors = new Mat();
// Tentative corner coordinates detected in the scene, in
// pixels.
private final Mat mCandidateSceneCorners =
new Mat(4, 1, CvType.CV_32FC2);
// Good corner coordinates detected in the scene, in pixels.
private final Mat mSceneCorners = new Mat(4, 1, CvType.CV_32FC2);
// The good detected corner coordinates, in pixels, as integers.
private final MatOfPoint mIntSceneCorners = new MatOfPoint();

// A grayscale version of the scene.
private final Mat mGraySrc = new Mat();
// Tentative matches of scene features and reference features.
private final MatOfDMatch mMatches = new MatOfDMatch();

// A feature detector, which finds features in images.
private final FeatureDetector mFeatureDetector =
FeatureDetector.create(FeatureDetector.ORB);
// A descriptor extractor, which creates descriptors of
// features.
private final DescriptorExtractor mDescriptorExtractor =
DescriptorExtractor.create(DescriptorExtractor.ORB);
// A descriptor matcher, which matches features based on their
// descriptors.
private final DescriptorMatcher mDescriptorMatcher = DescriptorMatcher
.create(DescriptorMatcher.BRUTEFORCE_HAMMINGLUT);

// The color of the outline drawn around the detected image.
private final Scalar mLineColor = new Scalar(0, 255, 0);

public ImageDetectionFilter(final Context context,
final int referenceImageResourceID) throws IOException {

// Load the reference image from the app's resources.
// It is loaded in BGR (blue, green, red) format.
mReferenceImage = Utils.loadResource(context, referenceImageResourceID,
Imgcodecs.CV_LOAD_IMAGE_COLOR);

// Create grayscale and RGBA versions of the reference image.
final Mat referenceImageGray = new Mat();
Imgproc.cvtColor(mReferenceImage, referenceImageGray,
Imgproc.COLOR_BGR2GRAY);

Imgproc.cvtColor(mReferenceImage, mReferenceImage,
Imgproc.COLOR_BGR2RGBA);

// Store the reference image's corner coordinates, in pixels.
mReferenceCorners.put(0, 0, new double[] { 0.0, 0.0 });
mReferenceCorners.put(1, 0,
new double[] { referenceImageGray.cols(),0.0 });
mReferenceCorners.put(2, 0,
new double[] { referenceImageGray.cols(),
referenceImageGray.rows() });
mReferenceCorners.put(3, 0,
new double[] { 0.0, referenceImageGray.rows() });

// Detect the reference features and compute their
// descriptors.
mFeatureDetector.detect(referenceImageGray,
mReferenceKeypoints);
mDescriptorExtractor.compute(referenceImageGray,
mReferenceKeypoints,mReferenceDescriptors);
}

public void apply(Mat src, Mat dst) {

// Convert the scene to grayscale.
Imgproc.cvtColor(src, mGraySrc, Imgproc.COLOR_RGBA2GRAY);

// Detect the same features, compute their descriptors,
// and match the scene descriptors to reference descriptors.
mFeatureDetector.detect(mGraySrc, mSceneKeypoints);
mDescriptorExtractor.compute(mGraySrc, mSceneKeypoints,
mSceneDescriptors);
mDescriptorMatcher.match(mSceneDescriptors,
mReferenceDescriptors,mMatches);

findSceneCorners();

// If the corners have been found, draw an outline around the
// target image.
// Else, draw a thumbnail of the target image.
draw(src, dst);

}

private void findSceneCorners() {
flagDraw = false;

final List<DMatch> matchesList = mMatches.toList();

if (matchesList.size() < 4) {
// There are too few matches to find the homography.
return;
}

final List<KeyPoint> referenceKeypointsList =
mReferenceKeypoints.toList();
final List<KeyPoint> sceneKeypointsList =
mSceneKeypoints.toList();

// Calculate the max and min distances between keypoints.
double maxDist = 0.0;
double minDist = Double.MAX_VALUE;

for (final DMatch match : matchesList) {
final double dist = match.distance;
if (dist < minDist) {
minDist = dist;
}
if (dist > maxDist) {
maxDist = dist;
}
}

// The thresholds for minDist are chosen subjectively
// based on testing. The unit is not related to pixel
// distances; it is related to the number of failed tests
// for similarity between the matched descriptors.
if (minDist > 50.0) {
// The target is completely lost.
// Discard any previously found corners.
mSceneCorners.create(0, 0, mSceneCorners.type());
return;
} else if (minDist > 25.0) {
// The target is lost but maybe it is still close.
// Keep any previously found corners.
return;
}

// Identify "good" keypoints and on match distance.
final ArrayList<Point> goodReferencePointsList =
new ArrayList<Point>();
final ArrayList<Point> goodScenePointsList =
new ArrayList<Point>();
final double maxGoodMatchDist = 1.75 * minDist;
for (final DMatch match : matchesList) {
if (match.distance < maxGoodMatchDist) {
goodReferencePointsList.add(
referenceKeypointsList.get(match.trainIdx).pt);
goodScenePointsList
.add(sceneKeypointsList.get(match.queryIdx).pt);
}
}
if (goodReferencePointsList.size() < 4
|| goodScenePointsList.size() < 4) {
// There are too few good points to find the homography.
return;
}
// There are enough good points to find the homography.
// (Otherwise, the method would have already returned.)

// Convert the matched points to MatOfPoint2f format, as
// required by the Calib3d.findHomography function.
final MatOfPoint2f goodReferencePoints = new MatOfPoint2f();
goodReferencePoints.fromList(goodReferencePointsList);

final MatOfPoint2f goodScenePoints = new MatOfPoint2f();
goodScenePoints.fromList(goodScenePointsList);

// Find the homography.
final Mat homography = Calib3d.findHomography(
goodReferencePoints,goodScenePoints);

// Use the homography to project the reference corner
// coordinates into scene coordinates.
Core.perspectiveTransform(mReferenceCorners,
mCandidateSceneCorners,homography);

// Convert the scene corners to integer format, as required
// by the Imgproc.isContourConvex function.
mCandidateSceneCorners.convertTo(mIntSceneCorners,
CvType.CV_32S);

// Check whether the corners form a convex polygon. If not,
// (that is, if the corners form a concave polygon), the
// detection result is invalid because no real perspective can
// make the corners of a rectangular image look like a concave
// polygon!
if (Imgproc.isContourConvex(mIntSceneCorners)) {
// The corners form a convex polygon, so record them as
// valid scene corners.
mCandidateSceneCorners.copyTo(mSceneCorners);
flagDraw = true;
}

}

protected void draw(final Mat src, final Mat dst) {

if (dst != src) {
src.copyTo(dst);
}

// Outline the found target in green.
Imgproc.line(dst, new Point(mSceneCorners.get(0, 0)), new Point(
mSceneCorners.get(1, 0)), mLineColor, 4);
Imgproc.line(dst, new Point(mSceneCorners.get(1, 0)), new Point(
mSceneCorners.get(2, 0)), mLineColor, 4);
Imgproc.line(dst, new Point(mSceneCorners.get(2, 0)), new Point(
mSceneCorners.get(3, 0)), mLineColor, 4);
Imgproc.line(dst, new Point(mSceneCorners.get(3, 0)), new Point(
mSceneCorners.get(0, 0)), mLineColor, 4);
}

public boolean getFlagDraw(){

return flagDraw;
}
}

最佳答案

我对 Java 不太熟悉,不确定这是否会有帮助,但我发布了一个示例,说明我如何使用 openCV 在 python 中实现这一点。也许这会帮助您作为指导。

(该示例改编自 this 网站,其中有您可能感兴趣的进一步解释)

在此示例中,我要在一组六只卡通动物中找到一只卡通动物的旋转版本。

基本上,您想使用训练和查询图像中的关键点调用 cv2.drawMatches() 并屏蔽不良匹配。我的代码的相关部分在最底部。

您的示例不是一个最小的代码示例,我没有完成所有的代码示例,但您似乎已经有了关键点并且应该准备好了吗?

enter image description here

enter image description here

enter image description here

import numpy as np
import cv2
from matplotlib import pyplot as plt

MIN_MATCH_COUNT = 4


img1 = cv2.imread('d:/one_animal_rotated.jpg',0) # queryImage
img2 = cv2.imread('d:/many_animals.jpg',0) # trainImage

# Initiate SIFT detector
sift = cv2.xfeatures2d.SIFT_create(0,3,0)
# find the keypoints and descriptors with SIFT
kp1, des1 = sift.detectAndCompute(img1,None)
kp2, des2 = sift.detectAndCompute(img2,None)

#find matches using FLANN
FLANN_INDEX_KDTREE = 0
index_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5)
search_params = dict(checks = 50)
flann = cv2.FlannBasedMatcher(index_params, search_params)
matches = flann.knnMatch(des1,des2,k=2)

#apply ratio test to find best matches (values from 0.7-1 made sense here)
good = []
for m,n in matches:
if m.distance < 1*n.distance:
good.append(m)

#find homography to transform the edges of the query image and draw them on the train image
#This is also used to mask all keypoints that aren't inside this box further below.
src_pts = np.float32([ kp1[m.queryIdx].pt for m in good]).reshape(-1,1,2)
dst_pts = np.float32([ kp2[m.trainIdx].pt for m in good]).reshape(-1,1,2)

M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC,5.0)
matchesMask = mask.ravel().tolist()

h,w = img1.shape
pts = np.float32([ [0,0],[0,h-1],[w-1,h-1],[w-1,0] ]).reshape(-1,1,2)
dst = cv2.perspectiveTransform(pts,M)
img2 = cv2.polylines(img2,[np.int32(dst)],True,255,3, cv2.LINE_AA)

#draw the good matched key points
draw_params = dict(matchColor = (0,255,0), # draw matches in green color
singlePointColor = None,
matchesMask = matchesMask, # draw only inliers
flags = 2)

img3 = cv2.drawMatches(img1,kp1,img2,kp2,good,None,**draw_params)
plt.figure()
plt.imshow(img3, 'gray'),plt.show()

关于java - DrawMatching between two images - 图像识别,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/38787930/

35 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com