gpt4 book ai didi

java - Spark SQL : Nested classes to parquet error

转载 作者:塔克拉玛干 更新时间:2023-11-02 08:39:26 25 4
gpt4 key购买 nike

我似乎无法写信给 parquet a JavaRDD<T>其中 T 表示 Person类(class)。我把它定义为

public class Person implements Serializable
{
private static final long serialVersionUID = 1L;
private String name;
private String age;
private Address address;
....

Address :

public class Address implements Serializable
{
private static final long serialVersionUID = 1L;
private String City; private String Block;
...<getters and setters>

然后我创建一个 JavaRDD像这样:

JavaRDD<Person> people = sc.textFile("/user/johndoe/spark/data/people.txt").map(new Function<String, Person>()
{
public Person call(String line)
{
String[] parts = line.split(",");
Person person = new Person();
person.setName(parts[0]);
person.setAge("2");
Address address = new Address("HomeAdd","141H");
person.setAddress(address);
return person;
}
});

注意 - 我手动设置 Address所有人都一样。这基本上是一个嵌套的 RDD。在尝试将其保存为 Parquet 文件时:

DataFrame dfschemaPeople = sqlContext.createDataFrame(people, Person.class);
dfschemaPeople.write().parquet("/user/johndoe/spark/data/out/people.parquet");

地址类是:

import java.io.Serializable;
public class Address implements Serializable
{
public Address(String city, String block)
{
super();
City = city;
Block = block;
}
private static final long serialVersionUID = 1L;
private String City;
private String Block;
//Omitting getters and setters
}

我遇到错误:

引起:java.lang.ClassCastException:com.test.schema.Address cannot be cast to org.apache.spark.sql.Row

我正在运行 spark-1.4.1。

  • 这是一个已知错误吗?
  • 如果我通过导入相同格式的嵌套 JSON 文件来执行相同操作,我就可以保存到 parquet。
  • 即使我创建了一个子 DataFrame,如:DataFrame dfSubset = sqlContext.sql("SELECT address.city FROM PersonTable");我仍然遇到同样的错误

那么是什么给了?如何从文本文件中读取复杂的数据结构并另存为 parquet?看来我不能这样做。

最佳答案

您正在使用有限制的 java api

来自 spark 文档: http://spark.apache.org/docs/1.4.1/sql-programming-guide.html#interoperating-with-rdds

Spark SQL 支持自动将 JavaBeans 的 RDD 转换为 DataFrame。使用反射获得的 BeanInfo 定义了表的模式。目前,Spark SQL 不支持包含嵌套或复杂类型(如 Lists 或 Arrays)的 JavaBeans。您可以创建一个 JavaBean,方法是创建一个实现 Serializable 并为其所有字段提供 getter 和 setter 的类。对于 Scala 案例类,它将起作用(更新为写入 Parquet 格式)

import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
import org.apache.spark.SparkConf
import org.apache.spark.rdd.RDD

case class Address(city:String, block:String);
case class Person(name:String,age:String, address:Address);
object Test2 {
def main(args: Array[String]): Unit = {

val conf = new SparkConf().setAppName("Simple Application").setMaster("local");
val sc = new SparkContext(conf)
val sqlContext = new org.apache.spark.sql.SQLContext(sc);
import sqlContext.implicits._
val people = sc.parallelize(List(Person("a", "b", Address("a", "b")), Person("c", "d", Address("c", "d"))));

val df = sqlContext.createDataFrame(people);
df.write.mode("overwrite").parquet("/tmp/people.parquet")
}
}

关于java - Spark SQL : Nested classes to parquet error,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/35823213/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com