- iOS/Objective-C 元类和类别
- objective-c - -1001 错误,当 NSURLSession 通过 httpproxy 和/etc/hosts
- java - 使用网络类获取 url 地址
- ios - 推送通知中不播放声音
我一直在尝试使用 openCSV 读取几个 csv 文件(大约 20 MB),但到目前为止速度很慢。我试图读取 4 个 csv 文件,我将它们加载到我设计的堆中。我想知道,是否有任何其他方法可以在更短的时间内完成。
private Heap<VOMovingViolations> datosHeap;
public void loadMovingViolations()
{
Runtime garbage = Runtime.getRuntime();
garbage.gc();
try
{
FileReader fileReaderMes1 = new FileReader(FECHAS[0]);
FileReader fileReaderMes2 = new FileReader(FECHAS[1]);
FileReader fileReaderMes3 = new FileReader(FECHAS[2]);
FileReader fileReaderMes4 = new FileReader(FECHAS[3]);
CSVReader enero = new CSVReaderBuilder(fileReaderMes1).withSkipLines(1).build();
CSVReader febrero = new CSVReaderBuilder(fileReaderMes2).withSkipLines(1).build();
CSVReader marzo = new CSVReaderBuilder(fileReaderMes3).withSkipLines(1).build();
CSVReader abril = new CSVReaderBuilder(fileReaderMes4).withSkipLines(1).build();
String[] row;
while((row = enero.readNext()) != null)
{
int objectId = Integer.parseInt(row[0]);
int totalPaid = (int)Double.parseDouble(row[9]);
short fi = Short.parseShort(row[8]);
short penalty1 = Short.parseShort(row[10]);
datosHeap.insert(new VOMovingViolations(objectId, totalPaid, fi, row[2], row[13],
row[12],row[14], row[15], row[4], row[3], penalty1));
}
while((row = febrero.readNext()) != null)
{
int objectId = Integer.parseInt(row[0]);
int totalPaid = (int)Double.parseDouble(row[9]);
short fi = Short.parseShort(row[8]);
short penalty1 = Short.parseShort(row[10]);
datosHeap.insert(new VOMovingViolations(objectId, totalPaid, fi, row[2], row[13],
row[12],row[14], row[15], row[4], row[3], penalty1));
}
while((row = marzo.readNext()) != null)
{
int objectId = Integer.parseInt(row[0]);
int totalPaid = (int)Double.parseDouble(row[9]);
short fi = Short.parseShort(row[8]);
short penalty1 = Short.parseShort(row[10]);
datosHeap.insert(new VOMovingViolations(objectId, totalPaid, fi, row[2], row[13],
row[12],row[14], row[15], row[4], row[3], penalty1));
}
while((row = abril.readNext()) != null)
{
int objectId = Integer.parseInt(row[0]);
int totalPaid = (int)Double.parseDouble(row[9]);
short fi = Short.parseShort(row[8]);
short penalty1 = Short.parseShort(row[10]);
datosHeap.insert(new VOMovingViolations(objectId, totalPaid, fi, row[2], row[13],
row[12],row[14], row[15], row[4], row[3], penalty1));
}
}
catch (FileNotFoundException e) {
// TODO Auto-generated catch block
e.printStackTrace();
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
如果有人能给我任何帮助或任何想法,我将不胜感激。
最佳答案
读取一个 20 MB 的 CSV 文件,并在每行中实例化一个对象,总耗时不到 1 秒。
您没有定义“慢”这个词。所以我做了一个实验,一个随意的基准测试。
首先,我们创建一个 20 MB 的文件,其中包含 40,000 条 Person
记录。每个 Person
都有一个法语名字和姓氏,一个 UUID ,以及一些任意文本作为描述。数据被写为 CSV 中的四列。文件在 UTF-8 .我用了Apache Commons CSV编写和阅读的图书馆。
其次,读取这个写入的文件。每行数据被读入内存,然后用于实例化和收集一个Person
对象。
读取此文件并为每一行实例化 Person
对象花费了不到一秒的总耗时。每行大约需要 20K nanoseconds .实际上,这包括读取文件两次,因为我们进行扫描以计算数据行数以设置所收集实例的初始容量。此外,我们正在将十六进制字符串输入解析为 UUID 的 128 位值。 ,所以我们有一些时间花在数据处理上(而不仅仅是阅读)。
对于 Java 16+,将 Person
类定义为 record .我们覆盖 toString
以避免打印出冗长的description
内容。
record Person ( String givenName , String surname , UUID id , String description )
{
static public String LOREM_IPSUM = "Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.";
@Override
public String toString ()
{
return "Person{ " +
"givenName='" + givenName + '\'' +
" | surname='" + surname + '\'' +
" | id='" + id + '\'' +
" }";
}
}
对于早期的 Java,编写一个常规的 Person
类。
package work.basil.example;
import java.util.UUID;
public class Person
{
// Static
static public String LOREM_IPSUM = "Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.";
// Member variables.
public String givenName, surname, description;
public UUID id;
public Person ( String givenName , String surname , UUID id , String description )
{
this.givenName = givenName;
this.surname = surname;
this.id = id;
this.description = description ;
}
@Override
public String toString ()
{
return "Person{ " +
"givenName='" + givenName + '\'' +
" | surname='" + surname + '\'' +
" | id='" + id + '\'' +
" }";
}
}
这是完整的应用程序,它写入然后读取 20 MB 的文件。请学习和批评,因为我很快就把它掀起来了。我没有仔细检查我的工作。
您会发现一个write
方法和一个read
方法。 main
方法调用两者并跟踪时间。
package work.basil.example;
import org.apache.commons.csv.CSVFormat;
import org.apache.commons.csv.CSVPrinter;
import org.apache.commons.csv.CSVRecord;
import java.io.BufferedReader;
import java.io.IOException;
import java.nio.charset.StandardCharsets;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.time.Duration;
import java.time.Instant;
import java.time.temporal.ChronoUnit;
import java.util.ArrayList;
import java.util.List;
import java.util.UUID;
import java.util.concurrent.ThreadLocalRandom;
public class CsvSpeed
{
public List < Person > read ( Path path )
{
// TODO: Add a check for valid file existing.
List < Person > list = List.of(); // Default to empty list.
try
{
// Prepare list.
int initialCapacity = ( int ) Files.lines( path ).count();
list = new ArrayList <>( initialCapacity );
// Read CSV file. For each row, instantiate and collect `DailyProduct`.
BufferedReader reader = Files.newBufferedReader( path );
Iterable < CSVRecord > records = CSVFormat.RFC4180.withFirstRecordAsHeader().parse( reader );
for ( CSVRecord record : records )
{
String givenName = record.get( "givenName" );
String surname = record.get( "surname" );
UUID id = UUID.fromString( record.get( "id" ) );
String description = record.get( "description" );
// Instantiate `Person` object, and collect it.
Person person = new Person( givenName , surname , id , description );
list.add( person );
}
} catch ( IOException e )
{
e.printStackTrace();
}
return list;
}
public void write ( final Path path )
{
ThreadLocalRandom random = ThreadLocalRandom.current();
try ( final CSVPrinter printer = CSVFormat.RFC4180.withHeader( "givenName" , "surname" , "id" , "description" ).print( path , StandardCharsets.UTF_8 ) ; )
{
int limit = 40_000; // 40_000 yields about 20 MB of data.
List < String > givenNames = List.of( "Adrien" , "Aimon" , "Alerion" , "Alexis" , "Alezan" , "Ancil" , "Andre" , "Antoine" , "Archard" , "Aurélien" , "Averill" , "Baptiste" , "Barnard" , "Bartelemy" , "Bastien" , "Baylee" , "Beale" , "Beau" , "Beaumont" , "Beauregard" , "Bellamy" , "Berger" , "Blaize" , "Blondel" , "Boyce" , "Bruce" , "Brunelle" , "Brys" , "Burcet" , "Burnell" , "Burrell" , "Byron" , "Canaan" , "Carden" , "Carolas" , "Cavell" , "Chace" , "Chanler" , "Chante" , "Chappel" , "Charles" , "Chasen" , "Chason" , "Chemin" , "Chene" , "Cher" , "Chevalier" , "Cheyne" , "Clément" , "Clemence" , "Corbin" , "Coty" , "Cygne" , "Damien" , "Dandre" , "Dariel" , "Darl" , "Dauphine" , "Davet" , "Dax" , "Dean" , "Delice" , "Delmon" , "Destin" , "Dominique" , "Donatien" , "Duke" , "Eliott" , "Elroy" , "Enzo" , "Erwan" , "Etalon" , "Ethan" , "Fabron" , "Ferrand" , "Filberte" , "Florent" , "Florian" , "Fontaine" , "Forest" , "Fortune" , "Franchot" , "Francois" , "Fraser" , "Frayne" , "Gaëtan" , "Gabin" , "Gage" , "Gaige" , "Garland" , "Garner" , "Gaston" , "Gauge" , "Gaylord" , "Germain" , "Germaine" , "German" , "Gervaise" , "Giles" , "Gilles" , "Gitan" , "Grosvener" , "Guifford" , "Guion" , "Guy" , "Guzman" , "Henri" , "Holland" , "Hugo" , "Hugues" , "Hyacinthe" , "Jérémy" , "Jacquan" , "Jacques" , "Jacquez" , "Janvier" , "Jardan" , "Jay" , "Jaye" , "Jehan" , "Jemond" , "Jocquez" , "Jonathan" , "Jules" , "Julien" , "Justus" , "Karoly" , "Lado" , "Lafayette" , "Lamond" , "Lancelin" , "Landis" , "Landry" , "Laron" , "Larrimore" , "Laurent" , "LaValle" , "Leandre" , "Leggett" , "Leonce" , "Leron" , "Leverett" , "Lilian" , "Loïc" , "Lorenzo" , "Louis" , "Lowell" , "Luc" , "Lucien" , "Lukas" , "Macaire" , "Mace" , "Mahieu" , "Maison" , "Malleville" , "Manneville" , "Mantel" , "Marc" , "Marcel" , "Marion" , "Marius" , "Markez" , "Markis" , "Marmion" , "Marquis" , "Marquise" , "Marshall" , "Martial" , "Maslin" , "Mason" , "Matheo" , "Mathias" , "Mathys" , "Matthieu" , "Maxence" , "Mayson" , "Mehdi" , "Merle" , "Merville" , "Montague" , "Montaigu" , "Monte" , "Montgomery" , "Montreal" , "Montrel" , "Moore" , "Morel" , "Mortimer" , "Nerville" , "Neuveville" , "Nicolas" , "Noë" , "Noah" , "Noe" , "Norman" , "Norville" , "Nouel" , "Olivier" , "Onfroi" , "Paien" , "Parfait" , "Parnell" , "Pascal" , "Patrice" , "Paul" , "Peppin" , "Percival" , "Percy" , "Pernell" , "Peverell" , "Philipe" , "Pierpont" , "Pierre" , "Pomeroy" , "Prewitt" , "Purvis" , "Quennell" , "Quentin" , "Quincey" , "Quincy" , "Quintin" , "Rémi" , "Rafaelle" , "Ranger" , "Raoul" , "Raphaël" , "Rapier" , "Rawlins" , "Ray" , "Raynard" , "Remi" , "René" , "Renard" , "Rene" , "Reule" , "Reynard" , "Robin" , "Romain" , "Rondel" , "Roy" , "Royal" , "Ruff" , "Rush" , "Russel" , "Rustin" , "Sabastien" , "Sacha" , "Salomon" , "Samuel" , "Satordi" , "Saville" , "Scoville" , "Sebastien" , "Sennett" , "Severin" , "Shant" , "Shantae" , "Sidney" , "Siffre" , "Simeon" , "Simon" , "Sinclair" , "Sofiane" , "Somer" , "Stephane" , "Sully" , "Sydney" , "Sylvain" , "Talbot" , "Talon" , "Telford" , "Tempest" , "Teppo" , "Théo" , "Thayer" , "Thibault" , "Thibaut" , "Thiery" , "Tiennan" , "Tiennot" , "Titouan" , "Toussaint" , "Travaris" , "Tyson" , "Urson" , "Vachel" , "Valentin" , "Valere" , "Vallis" , "Verdun" , "Victoir" , "Victor" , "Waltier" , "William" , "Wyatt" , "Yanis" , "Yann" , "Yves" , "Yvon" , "Zosime" , "Abrial" , "Abrielle" , "Abril" , "Adele" , "Alair" , "Alerion" , "Amee" , "Angelique" , "Annette" , "Antonella" , "Arian" , "Ariane" , "Armandina" , "Aubree" , "Aubrielle" , "Audra" , "Avril" , "Bella" , "Berneta" , "Bette" , "Blaise" , "Blanche" , "Blasa" , "Bonte" , "Brie" , "Brienne" , "Brigit" , "Cachay" , "Calice" , "Camille" , "Camylle" , "Caprice" , "Caressa" , "Caroline" , "Catin" , "Celesta" , "Celeste" , "Cera" , "Cerise" , "Chablis" , "Chalice" , "Chambray" , "Champagne" , "Chandell" , "Chaney" , "Chantal" , "Chante" , "Chanterelle" , "Chantile" , "Chantilly" , "Chantrice" , "Charla" , "Charlotte" , "Charmane" , "Chaton" , "Chemin" , "Chenetta" , "Cher" , "Chere" , "Cheri" , "Cheryl" , "Christine" , "Cidney" , "Cinderella" , "Claire" , "Claudette" , "Colette" , "Cordelle" , "Cydnee" , "Daeja" , "Daija" , "Daja" , "Damzel" , "Darelle" , "Darlene" , "Darselle" , "Dejanelle" , "Deleena" , "Delice" , "Demeri" , "Deni" , "Denise" , "Desgracias" , "Desire" , "Desiree" , "Destanee" , "Destiny" , "Dior" , "Domanique" , "Dominique" , "Elaina" , "Elaine" , "Elayna" , "Elise" , "Eloisa" , "Elyse" , "Emeline" , "Emmaline" , "Emmeline" , "Estella" , "Estrella" , "Etiennette" , "Evette" , "Fabienne" , "Fabrienne" , "Fanchon" , "Fancy" , "Fawna" , "Fayana" , "Fayette" , "Fifi" , "Fleur" , "Fleurette" , "Fontanna" , "Fosette" , "Francine" , "Frederique" , "Gabriel" , "Gabriele" , "Gabrielle" , "Gaby" , "Garcelle" , "Gena" , "Genie" , "Georgette" , "Germaine" , "Gervaise" , "Gitana" , "Harriet" , "Heloisa" , "Holland" , "Honnetta" , "Isabelle" , "Ivette" , "Ivonne" , "Jacqueena" , "Jacquetta" , "Jacquiline" , "Jacyline" , "Jaime" , "Jakqueline" , "Janeen" , "Janelly" , "Janina" , "Janiqua" , "Janique" , "Jannnelle" , "Jaquita" , "Jardena" , "Jeanetta" , "Jermaine" , "Jessamine" , "Jewel" , "Jewell" , "Joli" , "Jolie" , "Josephine" , "Jozephine" , "Julieta" , "Karessa" , "Karmaine" , "Klara" , "Laine" , "Lanelle" , "Laramie" , "Layne" , "Layney" , "Leala" , "Leonette" , "Lissette" , "Lizette" , "Lourdes" , "Lucienne" , "Ly" , "Lyla" , "Lysette" , "Madelaine" , "Malerie" , "Manette" , "Marais" , "Marcelle" , "Marché" , "Mardi" , "Margo" , "Marguerite" , "Marie" , "Marie Claude" , "Marie Frances" , "Marie Joelle" , "Marie Pascale" , "Marie Sophie" , "Marjolaine" , "Marquise" , "Marvella" , "Mathieu" , "Matisse" , "Maurelle" , "Maurissa" , "Mavis" , "Melisande" , "Michelle" , "Miette" , "Mignon" , "Mimi" , "Mirya" , "Monet" , "Moniqua" , "Monteen" , "Musetta" , "Myrlie" , "Nadeen" , "Nadia" , "Nadiyah" , "Naeva" , "Nanon" , "Natalle" , "Naudia" , "Nettie" , "Nicholas" , "Nicki" , "Nicky" , "Nicole" , "Nicolette" , "Nicolina" , "Nicolle" , "Nikolette" , "Ninette" , "Ninon" , "Noelle" , "Nycole" , "Odelette" , "Opaline" , "Orane" , "Orva" , "Page" , "Parisa" , "Parnel" , "Parris" , "Patrice" , "Peridot" , "Pippi" , "Prairie" , "Rachele" , "Rachelle" , "Racquel" , "Raphaelle" , "Raquelle" , "Remi" , "Renée" , "Renea" , "Renelle" , "Renita" , "Risette" , "Rochelle" , "Romy" , "Rosabel" , "Rosiclara" , "Ruba" , "Russhell" , "Saleena" , "Salina" , "Satin" , "Sedona" , "Serene" , "Shandelle" , "Shanta" , "Shante" , "Shariah" , "Sharita" , "Sharleen" , "Sheree" , "Shereen" , "Sherell" , "Sherice" , "Sherry" , "Sidnee" , "Sidney" , "Sidnie" , "Sidonie" , "Sinclaire" , "Solange" , "Solen" , "Sorrel" , "Suzette" , "Sydnee" , "Sydney" , "Tallis" , "Tempest" , "Toinette" , "Turquoise" , "Veronique" , "Vignette" , "Villette" , "Violeta" , "Virginie" , "Voleta" , "Vonny" );
List < String > surnames = List.of( "Arceneau" , "Aucoin" , "Babin" , "Babineaux" , "Benoit" , "Bergeron" , "Bernard" , "Bertrand" , "Bessette" , "Blanc" , "Blanchard" , "Bonnet" , "Boucher" , "Bourg" , "Bourque" , "Boutin" , "Bouvier" , "Braud" , "Broussard" , "Brun" , "Chevalier" , "David" , "Depaul" , "Desmarais" , "Disney" , "Dubois" , "Dupont" , "Dupuis" , "Durand" , "Fortescue" , "Fournier" , "Garnier" , "Gaudet" , "Gillet" , "Gillette" , "Girard" , "Gravois" , "Grosvenor" , "Lambert" , "Landry" , "Laroche" , "Laurent" , "Lefevre" , "Leroy" , "Leveque" , "Lisle" , "Martin" , "Michel" , "Molyneux" , "Moreau" , "Morel" , "Neville" , "Pelletier" , "Petit" , "Prideux" , "Renard" , "Richard" , "Robert" , "Rousseau" , "Roux" , "Rufus" , "Simon" , "Thomas" );
for ( int i = 1 ; i <= limit ; i++ )
{
String givenName = givenNames.get( random.nextInt( 0 , givenNames.size() ) );
String surname = surnames.get( random.nextInt( 0 , surnames.size() ) );
UUID id = UUID.randomUUID();
String description = Person.LOREM_IPSUM;
printer.printRecord( givenName , surname , id , description );
}
} catch ( IOException e )
{
e.printStackTrace();
}
}
public static void main ( final String[] args )
{
// Launch the app.
CsvSpeed app = new CsvSpeed();
// Write.
String when = Instant.now().truncatedTo( ChronoUnit.SECONDS ).toString().replace( ":" , "•" );
Path pathOutput = Paths.get( "/Users/basilbourque/persons.csv" );
app.write( pathOutput );
System.out.println( "Writing file: " + pathOutput );
// Read.
long start = System.nanoTime();
Path pathInput = Paths.get( "/Users/basilbourque/persons.csv" );
List < Person > list = app.read( pathInput );
long stop = System.nanoTime();
// Time.
long elapsed = ( stop - start );
Duration d = Duration.ofNanos( elapsed );
System.out.println( "Reading elapsed: " + d );
System.out.println( "Reading took nanos per row: " + ( elapsed / list.size() ) );
System.out.println( "nanos elapsed: " + elapsed + " | list.size: " + list.size() );
}
}
运行时:
Writing file: /Users/basilbourque/persons.csv
Reading elapsed: PT0.857816234S
Reading took nanos per row: 21445
nanos elapsed: 857816234 | list.size: 40000
技术栈:
关于java - 读取CSV文件java的最快方法,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/55084846/
我遇到以下问题。我想读取一个包含数百万行和数百列的大型 csv。我想向下转换列的数据类型。我的方法是读取 csv,然后使用 pd.to_numeric() 对其进行向下转换。我不知道列数及其类型。在读
目前,我从 SQL server (2008) 数据库获取数据。 cyurrent的方法是使用DataTable,然后将其传递并使用。 if (parameters != null)
我有以下问题。我有一个巨大的 csv 文件,想用多处理加载它。对于一个包含 500000 行和 130 列不同数据类型的示例文件,Pandas 需要 19 秒。我试过 dask 因为我想多处理阅读。但
是否有关于用于序列化各种 MFC 数据结构的二进制格式的明确文档?我已经能够在十六进制编辑器中查看我自己的一些类,并使用 Java 的 ByteBuffer 类读取它们(使用自动字节顺序转换等)。 但
我正在使用 Selenium 进行测试,我们用 HTML 文件编写测试用例,并用它们制作测试套件,我们的要求是编写足够健壮的测试用例,以根据测试环境改变自身。 为此,我不希望在 HTML 脚本本身中包
我需要一个 JavaScript 代码来读取存储为 .txt 文件的字典(或者也可以保存为任何其他类型的文件。它也可以在线获得)并将其内容存储在一个变量中。我不能找到一种让 JavaScript 像
我正在尝试遍历包含 SSH 登录和其他日志的日志文本文件。 程序正在返回 SSH 登录的总数。 我的解决方案确实有效,但似乎有点慢(在 200mo 文件上大约需要 3.5 秒)。我想知道是否有任何方法
我正在将大量数据从一个电子表格复制到工作簿中的其他 160 个电子表格。目前,Excel (2013) 遇到错误,因为它没有足够的资源来完成操作。 我的目标是将工作表 4 中 V13:XI1150 范
我正在尝试读取一个有 1147 行的文本文件。下面的代码仅读取第 1050-1147 行。我的目标是读取整个文件并提取位于不同行的特定值以在脚本中使用。一个示例是包含“BlockList: 2”的行中
我正在为游戏编写解释器。用户将其移动输入解释器,程序执行该移动。 现在我想为每个决定实现一个时间限制。玩家不应该能够思考超过 30 秒来写一个移动并按下回车。 call_with_time_limit
以this file例如,我正在尝试读取 data.frame 中的数据。来自 the doc (pdf 文件,表 1),它遵循一些 fortran 约定。我尝试了以下但收效甚微: dir 0' 将
我正在使用 R 阅读 Outlook 附件。我的引用在这里:Download attachment from an outlook email using R 这是我的电子邮件的截图: 这每天都会发送
我不会从表格中读取行来将主题放在列表中 php脚本 $url_obj='http://'.$host.':8069/xmlrpc/object'; $sock=new xmlrpc_client($u
我有一个这样的 csv 文件: id,name,value 1,peter,5 2,peter\,paul,3 我如何读取此文件并告诉 R "\," 不表示新列,仅表示 ","。 我必须添加该文件
我正在尝试读取 ~/Library/Preferences/com.apple.mail.plist (在 Snow Leopard 上)以获取电子邮件地址和其他信息以进入“关于”对话框。我使用以下代
This question already has answers here: How do I use floating-point division in bash? (19个回答) 5个月前关闭
本练习的目标是读取输入文件并将其存储到表中,然后验证输入中的某些字段并输出任何错误记录。我需要读取并存储每个策略组,以便表中一次仅存储 5 条记录,而不是整个文件。 所以我需要读取一个包含 5 条记录
据我了解,LWT 插入始终以 SERIAL 一致性级别完成。如果为 true,这是否意味着读取作为 LWT 插入的行可以安全地以 ANY 的一致性级别读取? 换句话说,我假设 LWT 插入是完全一致的
我看到很多很多通过java脚本读取cookie的函数,但我只想在变量中使用它一次,我是JS新手。 这是我的代码 var TheNumber = (Math.random() + '') * 10000
我正在使用 asp.net 和 C#。我在服务器上部署了一个应用程序[已发布],现在我想查看该网站的代码,据我所知,我可以阅读程序集来查看代码。 请告诉我如何实现它。 提前致谢。 最佳答案 您可以使用
我是一名优秀的程序员,十分优秀!