- iOS/Objective-C 元类和类别
- objective-c - -1001 错误,当 NSURLSession 通过 httpproxy 和/etc/hosts
- java - 使用网络类获取 url 地址
- ios - 推送通知中不播放声音
似乎我在使用 coremltool
和训练有素的 .caffemodel 时遇到了一些转换问题。我能够训练和测试 caffe
狗模型(120 个类别,20k 图像)并且它通过了我的直接 caffe
分类测试。不幸的是,在转换为 mlmodel
之后,它并没有给我对相同输入的有效预测。
训练模型
该模型已使用 Caffe、GoogleNet、打包到 lmdb 中的超过 120 个类别的 20k 图像集和大约 500k 次迭代进行了训练。我已经准备好图像数据库和所有其他的并把 all files together here
用caffe
分类
这classification example通过 caffe
。当我尝试针对经过训练的 caffemodel
运行分类请求时 - 它工作得很好,概率高 (80-99%),结果正确:
使用 Apple
iOS 11
CoreML
进行分类
不幸的是,当我试图将此 DTDogs.caffemodel
& deploy.txt
打包到 Apple iOS 11 CoreML
可使用的 .mlmodel 中时我有不同的预测结果。实际上,加载和使用模型没有错误,但我无法获得有效的分类,所有预测的置信度均为 0-15%,并且标签错误。为了正确测试它,我使用了与使用 caffe
进行直接分类时完全相同的图像:
我也试过 the pre-trained and pre-packed models从这里使用我的 iOS 应用程序 - 它们工作得很好,所以这似乎是打包过程的问题。
我错过了什么?
这里是用caffe
分类的例子:没问题,正确答案(python
):
import numpy as np
import sys
import caffe
import os
import urllib2
import matplotlib.pyplot as plt
%matplotlib inline
test_folder = '/home/<username>/Desktop/CaffeTest/'
test_image_path = "http://cdn.akc.org/content/hero/irish-terrier-Hero.jpg"
# init caffe net
model_def = test_folder + 'deploy.prototxt'
model_weights = test_folder + 'DTDogs.caffemodel'
# caffe.set_mode_gpu()
net = caffe.Net(model_def, model_weights, caffe.TEST)
# prepare transformer
transformer = caffe.io.Transformer({'data': net.blobs['data'].data.shape})
transformer.set_transpose('data', (2,0,1))
transformer.set_raw_scale('data', 255)
transformer.set_channel_swap('data', (2,1,0))
net.blobs['data'].reshape(1, 3, 256, 256)
test_image = urllib2.urlopen(test_image_path)
with open(test_folder + 'testImage.jpg','wb') as output:
output.write(test_image.read())
image = caffe.io.load_image(test_folder + 'testImage.jpg')
transformed_image = transformer.preprocess('data', image)
net.blobs['data'].data[...] = transformed_image
# classify
output = net.forward()
output_prob = output['prob'][0]
output_prob_val = output_prob.max() * 100
output_prob_ind = output_prob.argmax()
labels_file = test_folder + 'labels.txt'
labels = np.loadtxt(labels_file, str, delimiter='\t')
plt.imshow(image)
print 'predicted class is:', output_prob_ind
print 'predicted probabily is:', output_prob_val
print 'output label:', labels[output_prob_ind]
下面是使用 coremltools
打包 DTDogs.mlmodel
模型的示例。我看到生成的 .mlmodel
文件比原始 .caffemodel
文件小两倍,但它可能是 coremltools
进行的某种归档或压缩优化(python
):
import coremltools;
caffe_model = ('DTDogs.caffemodel', 'deploy.prototxt')
labels = 'labels.txt'
coreml_model = coremltools.converters.caffe.convert(caffe_model, class_labels = labels, image_input_names= "data")
coreml_model.short_description = "Dogs Model v1.14"
coreml_model.save('DTDogs.mlmodel')
这是在应用程序中使用 DTDogs.mlmodel
的示例。我正在使用常规图像选择器来选择用于 .caffe
分类测试 (swift
) 的相同图像:
func imagePickerController(_ picker: UIImagePickerController, didFinishPickingMediaWithInfo info: [String : Any]) {
picker.dismiss(animated: true)
print("Analyzing Image…")
guard let uiImage = info[UIImagePickerControllerOriginalImage] as? UIImage
else { print("no image from image picker"); return }
guard let ciImage = CIImage(image: uiImage)
else { print("can't create CIImage from UIImage"); return }
imageView.image = uiImage
do {
let model = try VNCoreMLModel(for: DTDogs().model)
let classificationRequest = VNCoreMLRequest(model: model, completionHandler: self.handleClassification)
let orientation = CGImagePropertyOrientation(uiImage.imageOrientation)
let handler = VNImageRequestHandler(ciImage: ciImage, orientation: Int32(orientation.rawValue))
try handler.perform([classificationRequest])
} catch {
print(error)
}
}
最佳答案
通常在这些情况下发生的情况是 Core ML 传递到模型中的图像格式不正确。
对于 Caffe 模型,您通常需要在调用 caffe.convert()
时设置 is_bgr=True
,并且您通常必须传入将从输入图像中减去的 RGB 平均值,也可能是缩放值。
换句话说,Core ML 需要做与您的 transformer
在 Python 脚本中做的相同的事情。
像这样:
coreml_model = coremltools.converters.caffe.convert(
caffe_model, class_labels = labels, image_input_names= "data",
is_bgr=True, image_scale=255.)
我不确定是否需要 image_scale=255.
但值得一试。 :-)
关于ios - 使用 iOS 11 mlmodel 进行图像分类 - 使用 coremltools 和训练有素的 .caffemodel 转换问题,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/45260273/
我喜欢 smartcase,也喜欢 * 和 # 搜索命令。但我更希望 * 和 # 搜索命令区分大小写,而/和 ?搜索命令遵循 smartcase 启发式。 是否有隐藏在某个地方我还没有找到的设置?我宁
关闭。这个问题是off-topic .它目前不接受答案。 想改进这个问题? Update the question所以它是on-topic对于堆栈溢出。 10年前关闭。 Improve this qu
从以下网站,我找到了执行java AD身份验证的代码。 http://java2db.com/jndi-ldap-programming/solution-to-sslhandshakeexcepti
似乎 melt 会使用 id 列和堆叠的测量变量 reshape 您的数据框,然后通过转换让您执行聚合。 ddply,从 plyr 包看起来非常相似..你给它一个数据框,几个用于分组的列变量和一个聚合
我的问题是关于 memcached。 Facebook 使用 memcached 作为其结构化数据的缓存,以减少用户的延迟。他们在 Linux 上使用 UDP 优化了 memcached 的性能。 h
在 Camel route ,我正在使用 exec 组件通过 grep 进行 curl ,但使用 ${HOSTNAME} 的 grep 无法正常工作,下面是我的 Camel 路线。请在这方面寻求帮助。
我正在尝试执行相当复杂的查询,在其中我可以排除与特定条件集匹配的项目。这是一个 super 简化的模型来解释我的困境: class Thing(models.Model) user = mod
我正在尝试执行相当复杂的查询,我可以在其中排除符合特定条件集的项目。这里有一个 super 简化的模型来解释我的困境: class Thing(models.Model) user = mod
我发现了很多嵌入/内容项目的旧方法,并且我遵循了在这里找到的最新方法(我假设):https://blog.angular-university.io/angular-ng-content/ 我正在尝试
我正在寻找如何使用 fastify-nextjs 启动 fastify-cli 的建议 我曾尝试将代码简单地添加到建议的位置,但它不起作用。 'use strict' const path = req
我正在尝试将振幅 js 与 React 和 Gatsby 集成。做 gatsby developer 时一切看起来都不错,因为它发生在浏览器中,但是当我尝试 gatsby build 时,我收到以下错
我试图避免过度执行空值检查,但同时我想在需要使代码健壮的时候进行空值检查。但有时我觉得它开始变得如此防御,因为我没有实现 API。然后我避免了一些空检查,但是当我开始单元测试时,它开始总是等待运行时异
尝试进行包含一些 NOT 的 Kibana 搜索,但获得包含 NOT 的结果,因此猜测我的语法不正确: "chocolate" AND "milk" AND NOT "cow" AND NOT "tr
我正在使用开源代码共享包在 iOS 中进行 facebook 集成,但收到错误“FT_Load_Glyph failed: glyph 65535: error 6”。我在另一台 mac 机器上尝试了
我正在尝试估计一个标准的 tobit 模型,该模型被审查为零。 变量是 因变量 : 幸福 自变量 : 城市(芝加哥,纽约), 性别(男,女), 就业(0=失业,1=就业), 工作类型(失业,蓝色,白色
我有一个像这样的项目布局 样本/ 一种/ 源/ 主要的/ java / java 资源/ .jpg 乙/ 源/ 主要的/ java / B.java 资源/ B.jpg 构建.gradle 设置.gr
如何循环遍历数组中的多个属性以及如何使用map函数将数组中的多个属性显示到网页 import React, { Component } from 'react'; import './App.css'
我有一个 JavaScript 函数,它进行 AJAX 调用以返回一些数据,该调用是在选择列表更改事件上触发的。 我尝试了多种方法来在等待时显示加载程序,因为它当前暂停了选择列表,从客户的 Angul
可能以前问过,但找不到。 我正在用以下形式写很多语句: if (bar.getFoo() != null) { this.foo = bar.getFoo(); } 我想到了三元运算符,但我认
我有一个表单,在将其发送到 PHP 之前我正在执行一些验证 JavaScript,验证后的 JavaScript 函数会发布用户在 中输入的文本。页面底部的标签;然而,此消息显示短暂,然后消失...
我是一名优秀的程序员,十分优秀!