gpt4 book ai didi

c++ - 如何使用 opencv 特征匹配检测复制移动伪造

转载 作者:可可西里 更新时间:2023-11-01 18:39:00 27 4
gpt4 key购买 nike

在我的 opencv 项目中,我想检测图像中的复制移动伪造。我知道如何使用 opencv FLANN 在 2 个不同的图像中进行特征匹配,但我对如何使用 FLANN 检测图像中的复制移动伪造感到非常困惑。

P.S1:我得到了图像的筛选关键点和描述符,并坚持使用特征匹配类。

P.S2:特征匹配的类型对我来说不重要。

提前致谢。

更新:

这些图片是我需要的例子

Input Image

Result

还有一段代码可以匹配两张图片的特征,并在两张图片(不是一张图片)上做类似的事情,android原生opencv格式的代码如下:

    vector<KeyPoint> keypoints;
Mat descriptors;

// Create a SIFT keypoint detector.
SiftFeatureDetector detector;
detector.detect(image_gray, keypoints);
LOGI("Detected %d Keypoints ...", (int) keypoints.size());

// Compute feature description.
detector.compute(image, keypoints, descriptors);
LOGI("Compute Feature ...");


FlannBasedMatcher matcher;
std::vector< DMatch > matches;
matcher.match( descriptors, descriptors, matches );

double max_dist = 0; double min_dist = 100;

//-- Quick calculation of max and min distances between keypoints
for( int i = 0; i < descriptors.rows; i++ )
{ double dist = matches[i].distance;
if( dist < min_dist ) min_dist = dist;
if( dist > max_dist ) max_dist = dist;
}

printf("-- Max dist : %f \n", max_dist );
printf("-- Min dist : %f \n", min_dist );

//-- Draw only "good" matches (i.e. whose distance is less than 2*min_dist,
//-- or a small arbitary value ( 0.02 ) in the event that min_dist is very
//-- small)
//-- PS.- radiusMatch can also be used here.
std::vector< DMatch > good_matches;

for( int i = 0; i < descriptors.rows; i++ )
{ if( matches[i].distance <= max(2*min_dist, 0.02) )
{ good_matches.push_back( matches[i]); }
}

//-- Draw only "good" matches
Mat img_matches;
drawMatches( image, keypoints, image, keypoints,
good_matches, img_matches, Scalar::all(-1), Scalar::all(-1),
vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS );

//-- Show detected matches
// imshow( "Good Matches", img_matches );
imwrite(imgOutFile, img_matches);

最佳答案

我不知道使用关键点来解决这个问题是否是个好主意。我宁愿测试 template matching (使用图像上的滑动窗口作为补丁)。与关键点相比,这种方法的缺点是对旋转和缩放敏感。

如果你想使用关键点,你可以:

  • 找到一组关键点(SURF、SIFT 或任何您想要的),
  • 使用 Brute Force Matcher (cv::BFMatcher) 的 knnMatch 函数计算每个其他关键点的匹配分数,
  • 保持不同点之间的匹配,即距离大于零(或阈值)的点。

    int nknn = 10; // max number of matches for each keypoint
    double minDist = 0.5; // distance threshold

    // Match each keypoint with every other keypoints
    cv::BFMatcher matcher(cv::NORM_L2, false);
    std::vector< std::vector< cv::DMatch > > matches;
    matcher.knnMatch(descriptors, descriptors, matches, nknn);

    double max_dist = 0; double min_dist = 100;

    //-- Quick calculation of max and min distances between keypoints
    for( int i = 0; i < descriptors.rows; i++ )
    {
    double dist = matches[i].distance;
    if( dist < min_dist ) min_dist = dist;
    if( dist > max_dist ) max_dist = dist;
    }

    // Compute distance and store distant matches
    std::vector< cv::DMatch > good_matches;
    for (int i = 0; i < matches.size(); i++)
    {
    for (int j = 0; j < matches[i].size(); j++)
    {
    // The METRIC distance
    if( matches[i][j].distance> max(2*min_dist, 0.02) )
    continue;

    // The PIXELIC distance
    Point2f pt1 = keypoints[queryIdx].pt;
    Point2f pt2 = keypoints[trainIdx].pt;

    double dist = cv::norm(pt1 - pt2);
    if (dist > minDist)
    good_matches.push_back(matches[i][j]);
    }
    }

    Mat img_matches;
    drawMatches(image_gray, keypoints, image_gray, keypoints, good_matches, img_matches);

关于c++ - 如何使用 opencv 特征匹配检测复制移动伪造,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/35951534/

27 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com