gpt4 book ai didi

c++ - 在 Spirit:Qi 中构建自定义表达式树(没有 Utree 或 Boost::Variant)

转载 作者:可可西里 更新时间:2023-11-01 18:27:30 24 4
gpt4 key购买 nike

首先,如果使用 Boost Variant 或 Utree 更容易,那么我会和他们一起解决,我会尝试在另一个主题中解决我的问题。但是,我非常希望能够像下面这样构建一棵树。

背景,如果您想直接进入问题,请忽略:我希望能够构建一个表达式树来解析类似

"({a} == 0) && ({b} > 5)"

或标准数学表达式

"(2 * a) + b"

然后我将在评估我的树之前定义 a 和 b 是什么,如下所示:

a = 10;
double val = myExpression->Evaluate();

我的问题来自于当我尝试构建尝试将字符串解析到我的表达式树中时。我正在使用一个抽象类“Expression”,然后派生“Variable”、“Constant”和“Binary”表达式(它也会做一元的,但它不应该影响我的问题。我一直在使用我的规则添加到树中时遇到问题,所以我显然做错了什么。我很难理解这些属性。

我的树如下(Tree.h):

class BinaryExpression;
typedef double (*func)(double, double);

class Expression
{
public:
virtual double Evaluate() = 0;
};

class BinaryExpression : public Expression
{
private:
Expression* lhs;
Expression* rhs;
func method;

double Evaluate();

public:
BinaryExpression(void);
BinaryExpression(char op, Expression* lhs, Expression* rhs);
BinaryExpression(char op);
void operator()(Expression* lhs, Expression* rhs);
};

class ConstantExpression : public Expression
{
private:
double value;
public:
ConstantExpression(void);
ConstantExpression(char op);
ConstantExpression(double val);

double Evaluate();
};

// Require as many types as there are fields in expression?
static double a;
static double b;
class VariableExpression : public Expression
{
private:
char op;

public:
VariableExpression(char op);

double Evaluate();
};

BOOST_FUSION_ADAPT_STRUCT(
BinaryExpression,
(Expression*, lhs)
(Expression*, rhs)
(func, method)
)

BOOST_FUSION_ADAPT_STRUCT(
VariableExpression,
(char, op)
)

BOOST_FUSION_ADAPT_STRUCT(
ConstantExpression,
(double, op)
)

树.cpp

typedef double (*func)(double, double);

/////////////////////////////////////////////////////////////////////////////
// BINARY EXPRESSION
////////////////////////////////////////////////////////////////////////////

BinaryExpression::BinaryExpression(void) {}

BinaryExpression::BinaryExpression(char op, Expression* lhs, Expression* rhs)
{
this->lhs = lhs;
this->rhs = rhs;

// Example, methods are held in another header
if (op == '+')
method = Add;
else if (op == '-')
method = Subtract;

}

double BinaryExpression::Evaluate()
{
return method(lhs->Evaluate(), rhs->Evaluate());
}

BinaryExpression::BinaryExpression(char op)
{
if (op == '+')
method = Add;
else if (op == '-')
method = Subtract;
}

void BinaryExpression::operator()(Expression* lhs, Expression* rhs)
{
this->lhs = lhs;
this->rhs = rhs;
}

/////////////////////////////////////////////////////////////////////////////
// CONSTANT EXPRESSION
////////////////////////////////////////////////////////////////////////////

ConstantExpression::ConstantExpression() {}

ConstantExpression::ConstantExpression(char op)
{
this->value = op - 48;
}
ConstantExpression::ConstantExpression(double val)
{
value = val;
}

double ConstantExpression::Evaluate()
{
return value;
}

/////////////////////////////////////////////////////////////////////////////
// VARIABLE EXPRESSION
////////////////////////////////////////////////////////////////////////////

VariableExpression::VariableExpression(char op)
{
this->op = op;
}

double VariableExpression::Evaluate()
{
// a and b are defined in the header, and are used to fill in the variables we want to evaluate
if (op == 'a')
return a;
if (op == 'b')
return b;
return 0;
}

现在,如果我手动构建树,它一切正常,所以我认为它的结构方式没有问题。

这是 Grammar.h(我尝试过各种东西的很多评论,我可以删除它们,但我可能值得展示我已经尝试过的/我想去的地方)

#include "Tree.h"

#include <boost/spirit/include/qi.hpp>
#include <boost/spirit/include/phoenix_function.hpp>

namespace qi = boost::spirit::qi;
namespace ascii = boost::spirit::ascii;

qi::_1_type _1;
qi::_2_type _2;

// Pass functions to boost
boost::phoenix::function<BinaryExpression> plus = BinaryExpression('+');
boost::phoenix::function<BinaryExpression> minus = BinaryExpression('-');

template <typename Iterator>
struct ExpressionParser : qi::grammar<Iterator, BinaryExpression(), ascii::space_type>
{
ExpressionParser() : ExpressionParser::base_type(expression)
{
qi::_3_type _3;
qi::_4_type _4;

qi::char_type char_;
qi::uint_type uint_;
qi::_val_type _val;
qi::raw_type raw;
qi::lexeme_type lexeme;
qi::alpha_type alpha;
qi::alnum_type alnum;
qi::bool_type bool_;
qi::double_type double_;


expression = //?
additive_expr [_val = _1]
;

//equality_expr =
// relational_expr >>
// *(lit("==") > relational_expr) [/*Semantice action to add to tree*/]
// ;

additive_expr =
primary_expr >>
( '+' > primary_expr) [plus(_val, _1)]
| ( '-' > primary_expr) [minus(_val, _1)]
;
// Also tried "_val = plus(_1, _2)"

primary_expr =
constant [_val = _1]
| variable [_val = _1]
//| '(' > expression > ')' [_val = _1]
;

string %=
'{' >> *(char_ - '}') >> '}'
;

// Returns ConstantExpression
constant =
double_ [_val = _1];

// Returns VariableExpression
variable =
char_ [_val = _1]
;
}

// constant expression = double
// variable expression = string
qi::rule<Iterator, BinaryExpression(), ascii::space_type>
expression;

qi::rule<Iterator, BinaryExpression(), ascii::space_type>
// eventually will deal with all these rules
equality_expr,
relational_expr,
logical_expr,
additive_expr,
multiplicative_expr,
primary_expr
;

qi::rule<Iterator, ConstantExpression(), ascii::space_type>
constant
;

qi::rule<Iterator, VariableExpression(), ascii::space_type>
variable
;

qi::rule<Iterator, std::string(), ascii::space_type>
string
;
};

所以这是一个真正的破解,但希望它能展示我想要实现的目标。任何建议或提示将不胜感激。是否有人在不使用 variant 或 utree 的情况下构建了这样的树。

如果我违反了惯例,我也很抱歉,对于我的格式,我试图让它尽可能可读。

最佳答案

我不清楚您对(递归)变体的提示是什么,但这里有一个变体伴随着您希望使用动态分配的节点使用“老式”树构建的愿望:

我在你的语法中故意回避了运算符优先级的问题,因为

注意我的做法

  • 通过使用 shared_ptr 消除了普遍存在的内存泄漏(如果您没有 TR1 库,可以使用 Boost)
  • 我删除了将特定 BinaryExpression 实例错误地重用为 phoenix lazy actor。相反,我制作了一个本地 makebinary现在的 Actor 。
  • 请注意现在如何支持运算符链 (1+2+5+6-10):

    additive_expr =
    primary_expr [ _val = _1 ]
    >> *(char_("-+*/") >> primary_expr) [ _val = makebinary(_1, _val, _2)]
    ;
  • 我添加了 {var} , / , *(expr)支持

  • 为显示添加序列化(Print 虚拟方法,operator<<)(为了显示方便,BinaryExpression 现在存储 operator 而不是结果 method)

  • 因此现在您可以使用 BOOST_SPIRIT_DEBUG(取消注释第一行)
  • 我重命名为ExpressionAbstractExpression (并使 de constructor protected)
  • 我重命名为PrimaryExpressionExpression (现在这是您的主要表达式数据类型)
  • 我展示了如何在 static 中简单地存储变量 map
  • 使用更少的融合结构自适应(现在仅适用于 variable)
  • 使用模板化构造函数技巧可以非常轻松地从不同的解析类型构造表达式:

    struct Expression : AbstractExpression {
    template <typename E>
    Expression(E const& e) : _e(make_from(e)) { } // cloning the expression
    // ...
    };

    足以有效地支持例如:

    primary_expr =
    ( '(' > expression > ')' ) [ _val = _1 ]
    | constant [ _val = _1 ]
    | variable [ _val = _1 ]
    ;
  • 为了好玩还包含了一些测试用例:

    Input:                3*8 + 6
    Expression: Expression(BinaryExpression(BinaryExpression(ConstantExpression(3) * ConstantExpression(8)) + ConstantExpression(6)))
    Parse success: true
    Remaining unparsed: ''
    (a, b): 0, 0
    Evaluation result: 30
    ----------------------------------------
    Input: 3*(8+6)
    Expression: Expression(BinaryExpression(ConstantExpression(3) * BinaryExpression(ConstantExpression(8) + ConstantExpression(6))))
    Parse success: true
    Remaining unparsed: ''
    (a, b): 0, 0
    Evaluation result: 42
    ----------------------------------------
    Input: 0x1b
    Expression: Expression(ConstantExpression(27))
    Parse success: true
    Remaining unparsed: ''
    (a, b): 0, 0
    Evaluation result: 27
    ----------------------------------------
    Input: 1/3
    Expression: Expression(BinaryExpression(ConstantExpression(1) / ConstantExpression(3)))
    Parse success: true
    Remaining unparsed: ''
    (a, b): 0, 0
    Evaluation result: 0.333333
    ----------------------------------------
    Input: .3333 * 8e12
    Expression: Expression(BinaryExpression(ConstantExpression(0.3333) * ConstantExpression(8e+12)))
    Parse success: true
    Remaining unparsed: ''
    (a, b): 0, 0
    Evaluation result: 2.6664e+12
    ----------------------------------------
    Input: (2 * a) + b
    Expression: Expression(BinaryExpression(BinaryExpression(ConstantExpression(2) * VariableExpression('a')) + VariableExpression('b')))
    Parse success: true
    Remaining unparsed: ''
    (a, b): 10, 7
    Evaluation result: 27
    ----------------------------------------
    Input: (2 * a) + b
    Expression: Expression(BinaryExpression(BinaryExpression(ConstantExpression(2) * VariableExpression('a')) + VariableExpression('b')))
    Parse success: true
    Remaining unparsed: ''
    (a, b): -10, 800
    Evaluation result: 780
    ----------------------------------------
    Input: (2 * {a}) + b
    Expression: Expression(BinaryExpression(BinaryExpression(ConstantExpression(2) * VariableExpression('a')) + VariableExpression('b')))
    Parse success: true
    Remaining unparsed: ''
    (a, b): -10, 800
    Evaluation result: 780
    ----------------------------------------
    Input: {names with spaces}
    Expression: Expression(VariableExpression('names with spaces'))
    Parse success: true
    Remaining unparsed: ''
    (a, b): 0, 0
    Evaluation result: 0
    ----------------------------------------

Full Code

// #define BOOST_SPIRIT_DEBUG
// #define BOOST_RESULT_OF_USE_DECLTYPE
// #define BOOST_SPIRIT_USE_PHOENIX_V3

#include <cassert>
#include <memory>
#include <iostream>
#include <map>

struct AbstractExpression;
typedef std::shared_ptr<AbstractExpression> Ptr;

struct AbstractExpression {
virtual ~AbstractExpression() {}
virtual double Evaluate() const = 0;
virtual std::ostream& Print(std::ostream& os) const = 0;

friend std::ostream& operator<<(std::ostream& os, AbstractExpression const& e)
{ return e.Print(os); }

protected: AbstractExpression() {}
};

template <typename Expr> // general purpose, static Expression cloner
static Ptr make_from(Expr const& t) { return std::make_shared<Expr>(t); }

struct BinaryExpression : AbstractExpression
{
BinaryExpression() {}

template<typename L, typename R>
BinaryExpression(char op, L const& l, R const& r)
: _op(op), _lhs(make_from(l)), _rhs(make_from(r))
{}

double Evaluate() const {
func f = Method(_op);
assert(f && _lhs && _rhs);
return f(_lhs->Evaluate(), _rhs->Evaluate());
}

private:
char _op;
Ptr _lhs, _rhs;

typedef double(*func)(double, double);

static double Add(double a, double b) { return a+b; }
static double Subtract(double a, double b) { return a-b; }
static double Multuply(double a, double b) { return a*b; }
static double Divide(double a, double b) { return a/b; }

static BinaryExpression::func Method(char op)
{
switch(op) {
case '+': return Add;
case '-': return Subtract;
case '*': return Multuply;
case '/': return Divide;
default: return nullptr;
}
}
std::ostream& Print(std::ostream& os) const
{ return os << "BinaryExpression(" << *_lhs << " " << _op << " " << *_rhs << ")"; }
};

struct ConstantExpression : AbstractExpression {
double value;
ConstantExpression(double v = 0) : value(v) {}

double Evaluate() const { return value; }

virtual std::ostream& Print(std::ostream& os) const
{ return os << "ConstantExpression(" << value << ")"; }
};

struct VariableExpression : AbstractExpression {
std::string _name;

static double& get(std::string const& name) {
static std::map<std::string, double> _symbols;
return _symbols[name];
/*switch(name) {
* case 'a': static double a; return a;
* case 'b': static double b; return b;
* default: throw "undefined variable";
*}
*/
}

double Evaluate() const { return get(_name); }

virtual std::ostream& Print(std::ostream& os) const
{ return os << "VariableExpression('" << _name << "')"; }
};

struct Expression : AbstractExpression
{
Expression() { }

template <typename E>
Expression(E const& e) : _e(make_from(e)) { } // cloning the expression

double Evaluate() const { assert(_e); return _e->Evaluate(); }

// special purpose overload to avoid unnecessary wrapping
friend Ptr make_from(Expression const& t) { return t._e; }
private:
Ptr _e;
virtual std::ostream& Print(std::ostream& os) const
{ return os << "Expression(" << *_e << ")"; }
};

//Tree.cpp

/////////////////////////////////////////////////////////////////////////////
// BINARY EXPRESSION
////////////////////////////////////////////////////////////////////////////

//#include "Tree.h"
#include <boost/spirit/include/qi.hpp>
#include <boost/spirit/include/phoenix.hpp>
#include <boost/fusion/adapted.hpp>

BOOST_FUSION_ADAPT_STRUCT(VariableExpression, (std::string, _name))

namespace qi = boost::spirit::qi;
namespace ascii = boost::spirit::ascii;
namespace phx = boost::phoenix;

// Pass functions to boost
template <typename Iterator>
struct ExpressionParser : qi::grammar<Iterator, Expression(), ascii::space_type>
{
struct MakeBinaryExpression {
template<typename,typename,typename> struct result { typedef BinaryExpression type; };

template<typename C, typename L, typename R>
BinaryExpression operator()(C op, L const& lhs, R const& rhs) const
{ return BinaryExpression(op, lhs, rhs); }
};

phx::function<MakeBinaryExpression> makebinary;

ExpressionParser() : ExpressionParser::base_type(expression)
{
using namespace qi;
expression =
additive_expr [ _val = _1]
;

additive_expr =
primary_expr [ _val = _1 ]
>> *(char_("-+*/") >> primary_expr) [ _val = makebinary(_1, _val, _2)]
;

primary_expr =
( '(' > expression > ')' ) [ _val = _1 ]
| constant [ _val = _1 ]
| variable [ _val = _1 ]
;

constant = lexeme ["0x" >> hex] | double_ | int_;
string = '{' >> lexeme [ *~char_("}") ] > '}';
variable = string | as_string [ alpha ];

BOOST_SPIRIT_DEBUG_NODE(expression);
BOOST_SPIRIT_DEBUG_NODE(additive_expr);

BOOST_SPIRIT_DEBUG_NODE(primary_expr);
BOOST_SPIRIT_DEBUG_NODE(constant);
BOOST_SPIRIT_DEBUG_NODE(variable);
BOOST_SPIRIT_DEBUG_NODE(string);
}

qi::rule<Iterator, Expression() , ascii::space_type> expression;
qi::rule<Iterator, Expression() , ascii::space_type> additive_expr;

qi::rule<Iterator, Expression() , ascii::space_type> primary_expr;
qi::rule<Iterator, ConstantExpression(), ascii::space_type> constant;
qi::rule<Iterator, VariableExpression(), ascii::space_type> variable;
qi::rule<Iterator, std::string() , ascii::space_type> string;
};

void test(const std::string input, double a=0, double b=0)
{
typedef std::string::const_iterator It;
ExpressionParser<It> p;

Expression e;
It f(input.begin()), l(input.end());
bool ok = qi::phrase_parse(f,l,p,ascii::space,e);

std::cout << "Input: " << input << "\n";
std::cout << "Expression: " << e << "\n";
std::cout << "Parse success: " << std::boolalpha << ok << "\n";
std::cout << "Remaining unparsed: '" << std::string(f,l) << "'\n";

std::cout << "(a, b): " << a << ", " << b << "\n";

VariableExpression::get("a") = a;
VariableExpression::get("b") = b;
std::cout << "Evaluation result: " << e.Evaluate() << "\n";
std::cout << "----------------------------------------\n";
}

int main()
{
test("3*8 + 6");
test("3*(8+6)");
test("0x1b");
test("1/3");
test(".3333 * 8e12");
test("(2 * a) + b", 10, 7);
test("(2 * a) + b", -10, 800);
test("(2 * {a}) + b", -10, 800);
test("{names with spaces}");
}

关于c++ - 在 Spirit:Qi 中构建自定义表达式树(没有 Utree 或 Boost::Variant),我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/13056893/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com