gpt4 book ai didi

C++11 可重入类锁定策略

转载 作者:可可西里 更新时间:2023-11-01 17:58:48 25 4
gpt4 key购买 nike

我有一个使用 pimpl 习惯用法的接口(interface),但是该接口(interface)需要是可重入的。然而,调用线程不需要知道锁定。这是一个由四部分组成的问题,其中一部分是无端设计的 C++11 示例(包含示例是为了解决我遇到过的几个类似 FAQ 的问题:lockingpimplrvalue 和 C++11,其中答案的质量有些可疑)。

在标题中,example.hpp:

#ifndef EXAMPLE_HPP
#define EXAMPLE_HPP

#include <memory>
#include <string>

#ifndef BOOST_THREAD_SHARED_MUTEX_HPP
# include <boost/thread/shared_mutex.hpp>
#endif

namespace stackoverflow {

class Example final {
public:
typedef ::boost::shared_mutex shared_mtx_t;
typedef ::boost::shared_lock< shared_mtx_t > shared_lock_t;
typedef ::boost::unique_lock< shared_mtx_t > unique_lock_t;

Example();
Example(const std::string& initial_foo);

~Example();
Example(const Example&) = delete; // Prevent copying
Example& operator=(const Example&) = delete; // Prevent assignment

// Example getter method that supports rvalues
std::string foo() const;

// Example setter method using perfect forwarding & move semantics. Anything
// that's std::string-like will work as a parameter.
template<typename T>
bool foo_set(T&& new_val);

// Begin foo_set() variants required to deal with C types (e.g. char[],
// char*). The rest of the foo_set() methods here are *NOT* required under
// normal circumstances.

// Setup a specialization for const char[] that simply forwards along a
// std::string. This is preferred over having to explicitly instantiate a
// bunch of const char[N] templates or possibly std::decay a char[] to a
// char* (i.e. using a std::string as a container is a Good Thing(tm)).
//
// Also, without this, it is required to explicitly instantiate the required
// variants of const char[N] someplace. For example, in example.cpp:
//
// template bool Example::foo_set<const char(&)[6]>(char const (&)[6]);
// template bool Example::foo_set<const char(&)[7]>(char const (&)[7]);
// template bool Example::foo_set<const char(&)[8]>(char const (&)[8]);
// ...
//
// Eww. Best to just forward to wrap new_val in a std::string and proxy
// along the call to foo_set<std::string>().
template<std::size_t N>
bool foo_set(const char (&new_val)[N]) { return foo_set(std::string(new_val, N)); }

// Inline function overloads to support null terminated char* && const
// char* arguments. If there's a way to reduce this duplication with
// templates, I'm all ears because I wasn't able to generate a templated
// versions that didn't conflict with foo_set<T&&>().
bool foo_set(char* new_val) { return foo_set(std::string(new_val)); }
bool foo_set(const char* new_val) { return foo_set(std::string(new_val)); }

// End of the foo_set() overloads.

// Example getter method for a POD data type
bool bar(const std::size_t len, char* dst) const;
std::size_t bar_capacity() const;

// Example setter that uses a unique lock to access foo()
bool bar_set(const std::size_t len, const char* src);

// Question #1: I can't find any harm in making Impl public because the
// definition is opaque. Making Impl public, however, greatly helps with
// implementing Example, which does have access to Example::Impl's
// interface. This is also preferre, IMO, over using friend.
class Impl;

private:
mutable shared_mtx_t rw_mtx_;
std::unique_ptr<Impl> impl_;
};

} // namespace stackoverflow

#endif // EXAMPLE_HPP

然后在实现中:

#include "example.hpp"

#include <algorithm>
#include <cstring>
#include <utility>

namespace stackoverflow {

class Example;
class Example::Impl;


#if !defined(_MSC_VER) || _MSC_VER > 1600
// Congratulations!, you're using a compiler that isn't broken

// Explicitly instantiate std::string variants
template bool Example::foo_set<std::string>(std::string&& src);
template bool Example::foo_set<std::string&>(std::string& src);
template bool Example::foo_set<const std::string&>(const std::string& src);

// The following isn't required because of the array Example::foo_set()
// specialization, but I'm leaving it here for reference.
//
// template bool Example::foo_set<const char(&)[7]>(char const (&)[7]);
#else
// MSVC workaround: msvc_rage_hate() isn't ever called, but use it to
// instantiate all of the required templates.
namespace {
void msvc_rage_hate() {
Example e;
const std::string a_const_str("a");
std::string a_str("b");
e.foo_set(a_const_str);
e.foo_set(a_str);
e.foo_set("c");
e.foo_set(std::string("d"));
}
} // anon namespace
#endif // _MSC_VER



// Example Private Implementation

class Example::Impl final {
public:
// ctors && obj boilerplate
Impl();
Impl(const std::string& init_foo);
~Impl() = default;
Impl(const Impl&) = delete;
Impl& operator=(const Impl&) = delete;

// Use a template because we don't care which Lockable concept or LockType
// is being used, just so long as a lock is held.
template <typename LockType>
bool bar(LockType& lk, std::size_t len, char* dst) const;

template <typename LockType>
std::size_t bar_capacity(LockType& lk) const;

// bar_set() requires a unique lock
bool bar_set(unique_lock_t& lk, const std::size_t len, const char* src);

template <typename LockType>
std::string foo(LockType& lk) const;

template <typename T>
bool foo_set(unique_lock_t& lk, T&& src);

private:
// Example datatype that supports rvalue references
std::string foo_;

// Example POD datatype that doesn't support rvalue
static const std::size_t bar_capacity_ = 16;
char bar_[bar_capacity_ + 1];
};

// Example delegating ctor
Example::Impl::Impl() : Impl("default foo value") {}

Example::Impl::Impl(const std::string& init_foo) : foo_{init_foo} {
std::memset(bar_, 99 /* ASCII 'c' */, bar_capacity_);
bar_[bar_capacity_] = '\0'; // null padding
}


template <typename LockType>
bool
Example::Impl::bar(LockType& lk, const std::size_t len, char* dst) const {
BOOST_ASSERT(lk.owns_lock());
if (len != bar_capacity(lk))
return false;
std::memcpy(dst, bar_, len);

return true;
}


template <typename LockType>
std::size_t
Example::Impl::bar_capacity(LockType& lk) const {
BOOST_ASSERT(lk.owns_lock());
return Impl::bar_capacity_;
}


bool
Example::Impl::bar_set(unique_lock_t &lk, const std::size_t len, const char* src) {
BOOST_ASSERT(lk.owns_lock());

// Return false if len is bigger than bar_capacity or the values are
// identical
if (len > bar_capacity(lk) || foo(lk) == src)
return false;

// Copy src to bar_, a side effect of updating foo_ if they're different
std::memcpy(bar_, src, std::min(len, bar_capacity(lk)));
foo_set(lk, std::string(src, len));
return true;
}


template <typename LockType>
std::string
Example::Impl::foo(LockType& lk) const {
BOOST_ASSERT(lk.owns_lock());
return foo_;
}


template <typename T>
bool
Example::Impl::foo_set(unique_lock_t &lk, T&& src) {
BOOST_ASSERT(lk.owns_lock());
if (foo_ == src) return false;
foo_ = std::move(src);
return true;
}


// Example Public Interface

Example::Example() : impl_(new Impl{}) {}
Example::Example(const std::string& init_foo) : impl_(new Impl{init_foo}) {}
Example::~Example() = default;

bool
Example::bar(const std::size_t len, char* dst) const {
shared_lock_t lk(rw_mtx_);
return impl_->bar(lk, len , dst);
}

std::size_t
Example::bar_capacity() const {
shared_lock_t lk(rw_mtx_);
return impl_->bar_capacity(lk);
}

bool
Example::bar_set(const std::size_t len, const char* src) {
unique_lock_t lk(rw_mtx_);
return impl_->bar_set(lk, len, src);
}

std::string
Example::foo() const {
shared_lock_t lk(rw_mtx_);
return impl_->foo(lk);
}

template<typename T>
bool
Example::foo_set(T&& src) {
unique_lock_t lk(rw_mtx_);
return impl_->foo_set(lk, std::forward<T>(src));
}

} // namespace stackoverflow

我的问题是:

  1. 是否有更好的方法来处理私有(private)实现内部的锁定?
  2. 鉴于 Impl 的定义不透明,将其公开是否有实际危害?
  3. 使用 clang 的 -O4 启用 Link-Time Optimization 时,链接器应该可以绕过 std::unique_ptr 的取消引用开销。有人验证过吗?
  4. 有没有办法调用 foo_set("asdf") 并正确链接示例?我们在确定什么是 const char[6] 的正确显式模板实例化时遇到了问题。现在我已经设置了一个模板特化,它创建一个 std::string 对象并代理对 foo_set() 的调用。综合考虑,这似乎是最好的前进方式,但我想知道如何传递“asdf”和 std::decay 结果。

关于锁定策略,出于以下几个原因,我对此产生了明显的偏见:

  • 我可以在适当的时候将互斥锁更改为独占互斥锁
  • 通过将 Impl API 设计为包含所需的锁,可以为锁语义提供非常强大的编译时保证
  • 很难忘记锁定某些东西(当这种情况发生时会出现一个“简单的 API”错误,一旦 API 被修复,编译器将再次捕获它)
  • 由于 RAII 和 Impl 没有对互斥锁的引用,很难保持锁定或创建死锁
  • 模板的使用消除了从唯一锁降级为共享锁的需要
  • 由于此锁定策略涵盖的代码比实际需要的多,因此需要明确努力将锁从唯一锁降级为共享锁,这可以处理非常常见的情况,即在进入时需要重新测试对共享锁所做的假设独特的锁定区域
  • 错误修复或 Impl API 更改不需要重新编译整个应用程序,因为 example.hpp 的 API 是外部修复的。

我读过 ACE也使用这种类型的锁定策略,但我欢迎来自 ACE 用户或其他人的一些现实世界的批评:将锁定作为界面的必需部分传递。

为了完整起见,这里有一个 example_main.cpp 供人们咀嚼。

#include <sysexits.h>

#include <cassert>
#include <iostream>
#include <memory>
#include <stdexcept>

#include "example.hpp"

int
main(const int /*argc*/, const char** /*argv*/) {
using std::cout;
using std::endl;
using stackoverflow::Example;

{
Example e;
cout << "Example's foo w/ empty ctor arg: " << e.foo() << endl;
}

{
Example e("foo");
cout << "Example's foo w/ ctor arg: " << e.foo() << endl;
}

try {
Example e;
{ // Test assignment from std::string
std::string str("cccccccc");
e.foo_set(str);
assert(e.foo() == "cccccccc"); // Value is the same
assert(str.empty()); // Stole the contents of a_str
}
{ // Test assignment from a const std::string
const std::string const_str("bbbbbbb");
e.foo_set(const_str);
assert(const_str == "bbbbbbb"); // Value is the same
assert(const_str.c_str() != e.foo().c_str()); // Made a copy
}
{
// Test a const char[7] and a temporary std::string
e.foo_set("foobar");
e.foo_set(std::string("ddddd"));
}
{ // Test char[7]
char buf[7] = {"foobar"};
e.foo_set(buf);
assert(e.foo() == "foobar");
}
{ //// And a *char[] & const *char[]
// Use unique_ptr to automatically free buf
std::unique_ptr<char[]> buf(new char[7]);
std::memcpy(buf.get(), "foobar", 6);
buf[6] = '\0';
e.foo_set(buf.get());
const char* const_ptr = buf.get();
e.foo_set(const_ptr);
assert(e.foo() == "foobar");
}

cout << "Example's bar capacity: " << e.bar_capacity() << endl;
const std::size_t len = e.bar_capacity();

std::unique_ptr<char[]> buf(new char[len +1]);

// Copy bar in to buf
if (!e.bar(len, buf.get()))
throw std::runtime_error("Unable to get bar");
buf[len] = '\0'; // Null terminate the C string
cout << endl << "foo and bar (a.k.a.) have different values:" << endl;
cout << "Example's foo value: " << e.foo() << endl;
cout << "Example's bar value: " << buf.get() << endl;

// Set bar, which has a side effect of calling foo_set()
buf[0] = 'c'; buf[1] = buf[2] = '+'; buf[3] = '\0';
if (!e.bar_set(sizeof("c++") - 1, buf.get()))
throw std::runtime_error("Unable to set bar");

cout << endl << "foo and bar now have identical values but only one lock was acquired when setting:" << endl;
cout << "Example's foo value: " << e.foo() << endl;
cout << "Example's bar value: " << buf.get() << endl;
} catch (...) {
return EX_SOFTWARE;
}

return EX_OK;
}

并构建使用 C++11libc++ 的说明:

clang++ -O4 -std=c++11 -stdlib=libc++ -I/path/to/boost/include -o example.cpp.o -c example.cpp
clang++ -O4 -std=c++11 -stdlib=libc++ -I/path/to/boost/include -o example_main.cpp.o -c example_main.cpp
clang++ -O4 -stdlib=libc++ -o example example.cpp.o example_main.cpp.o /path/to/boost/lib/libboost_exception-mt.dylib /path/to/boost/lib/libboost_system-mt.dylib /path/to/boost/lib/libboost_thread-mt.dylib

作为一个小小的奖励,我更新了这个例子,在 foo_set() 方法中包含了使用右值引用的完美转发。虽然不完美,但它比我预期的要花费更长的时间来正确地进行模板实例化,这是链接时的一个问题。这还包括 C 基本类型的适当重载,包括:char*const char*char[N] const char[N].

最佳答案

对于问题 1,我想做的一件事是使用 SFINAE 限制传入的锁类型作为 LockType 允许 shared_lock_tunique_lock_t

即:

template <typename LockType>
typename std::enable_if<
std::is_same< LockType, shared_lock_t > || std::is_same< LockType, unique_lock_t >,
size_t
>::type
bar_capacity(LockType& lk) const;

...但这确实有点冗长。

这意味着传入错误类型的 Lock 会给您一个“不匹配”的错误。另一种方法是有两个不同的 bar_capacity,它们采用 shared_lock_tunique_lock_t 暴露,以及一个私有(private)的 bar_capacity,它们采用模板 锁定类型

如所写,任何具有 .owns_lock() 方法并返回可转换为 bool 的类型的类型都是有效参数...

关于C++11 可重入类锁定策略,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/13240015/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com