- android - RelativeLayout 背景可绘制重叠内容
- android - 如何链接 cpufeatures lib 以获取 native android 库?
- java - OnItemClickListener 不起作用,但 OnLongItemClickListener 在自定义 ListView 中起作用
- java - Android 文件转字符串
以下代码分别使用 boost.compute 和 opencl c++ 包装器添加两个 vector 。结果显示 boost.compute 比 opencl c++ 包装器慢了近 20 倍。我想知道我是否错过了使用 boost.compute 或者它确实很慢。平台:win7、vs2013、boost 1.55、boost.compute 0.2、ATI Radeon HD 4600
代码使用 c++ 包装器:
#define __CL_ENABLE_EXCEPTIONS
#include <CL/cl.hpp>
#include <boost/timer/timer.hpp>
#include <boost/smart_ptr/scoped_array.hpp>
#include <fstream>
#include <numeric>
#include <algorithm>
#include <functional>
int main(){
static char kernelSourceCode[] = "\
__kernel void vadd(__global int * a, __global int * b, __global int * c){\
size_t i = get_global_id(0);\
\
c[i] = a[i] + b[i];\
}\
";
using type = boost::scoped_array<int>;
size_t const BUFFER_SIZE = 1UL << 13;
type A(new int[BUFFER_SIZE]);
type B(new int[BUFFER_SIZE]);
type C(new int[BUFFER_SIZE]);
std::iota(A.get(), A.get() + BUFFER_SIZE, 0);
std::transform(A.get(), A.get() + BUFFER_SIZE, B.get(), std::bind(std::multiplies<int>(), std::placeholders::_1, 2));
try {
std::vector<cl::Platform> platformList;
// Pick platform
cl::Platform::get(&platformList);
// Pick first platform
cl_context_properties cprops[] = {
CL_CONTEXT_PLATFORM,
(cl_context_properties)(platformList[0])(),
0
};
cl::Context context(CL_DEVICE_TYPE_GPU, cprops);
// Query the set of devices attached to the context
std::vector<cl::Device> devices = context.getInfo<CL_CONTEXT_DEVICES>();
// Create command-queue
cl::CommandQueue queue(context, devices[0], 0);
// Create the program from source
cl::Program::Sources sources(
1,
std::make_pair(kernelSourceCode, 0)
);
cl::Program program(context, sources);
// Build program
program.build(devices);
// Create buffer for A and copy host contents
cl::Buffer aBuffer = cl::Buffer(
context,
CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
BUFFER_SIZE * sizeof(int),
(void *)&A[0]);
// Create buffer for B and copy host contents
cl::Buffer bBuffer = cl::Buffer(
context,
CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
BUFFER_SIZE * sizeof(int),
(void *)&B[0]);
// Create buffer that uses the host ptr C
cl::Buffer cBuffer = cl::Buffer(
context,
CL_MEM_READ_WRITE | CL_MEM_USE_HOST_PTR,
BUFFER_SIZE * sizeof(int),
(void *)&C[0]);
// Create kernel object
cl::Kernel kernel(program, "vadd");
// Set kernel args
kernel.setArg(0, aBuffer);
kernel.setArg(1, bBuffer);
kernel.setArg(2, cBuffer);
// Do the work
void *output;
{
boost::timer::auto_cpu_timer timer;
queue.enqueueNDRangeKernel(
kernel,
cl::NullRange,
cl::NDRange(BUFFER_SIZE),
cl::NullRange
);
output = (int *)queue.enqueueMapBuffer(
cBuffer,
CL_TRUE, // block
CL_MAP_READ,
0,
BUFFER_SIZE * sizeof(int)
);
}
std::ofstream gpu("gpu.txt");
for (int i = 0; i < BUFFER_SIZE; i++) {
gpu << C[i] << " ";
}
queue.enqueueUnmapMemObject(
cBuffer,
output);
}
catch (cl::Error const &err) {
std::cerr << err.what() << "\n";
}
return EXIT_SUCCESS;
}
代码使用 boost.compute:
#include <boost/compute/container/mapped_view.hpp>
#include <boost/compute/algorithm/transform.hpp>
#include <boost/compute/functional/operator.hpp>
#include <numeric>
#include <algorithm>
#include <functional>
#include <boost/timer/timer.hpp>
#include <boost/smart_ptr/scoped_array.hpp>
#include <fstream>
#include <boost/tuple/tuple_comparison.hpp>
int main(){
size_t const BUFFER_SIZE = 1UL << 13;
boost::scoped_array<int> A(new int[BUFFER_SIZE]), B(new int[BUFFER_SIZE]), C(new int[BUFFER_SIZE]);
std::iota(A.get(), A.get() + BUFFER_SIZE, 0);
std::transform(A.get(), A.get() + BUFFER_SIZE, B.get(), std::bind(std::multiplies<int>(), std::placeholders::_1, 2));
try{
if (boost::compute::system::default_device().type() != CL_DEVICE_TYPE_GPU){
std::cerr << "Not GPU\n";
}
else{
boost::compute::command_queue queue = boost::compute::system::default_queue();
boost::compute::mapped_view<int> mA(static_cast<const int*>(A.get()), BUFFER_SIZE),
mB(static_cast<const int*>(B.get()), BUFFER_SIZE);
boost::compute::mapped_view<int> mC(C.get(), BUFFER_SIZE);
{
boost::timer::auto_cpu_timer timer;
boost::compute::transform(
mA.cbegin(), mA.cend(),
mB.cbegin(),
mC.begin(),
boost::compute::plus<int>(),
queue
);
mC.map(CL_MAP_READ, queue);
}
std::ofstream gpu("gpu.txt");
for (size_t i = 0; i != BUFFER_SIZE; ++i) gpu << C[i] << " ";
mC.unmap(queue);
}
}
catch (boost::compute::opencl_error const &err){
std::cerr << err.what() << "\n";
}
return EXIT_SUCCESS;
}
最佳答案
transform()
生成的内核代码Boost.Compute 中的函数应该与您在 C++ 包装器版本中使用的内核代码几乎相同(尽管 Boost.Compute 会进行一些展开)。
您看到时间差异的原因是,在第一个版本中,您只测量将内核排队并将结果映射回主机所需的时间。在 Boost.Compute 版本中,您还测量了创建 transform()
所需的时间。内核,编译它,然后执行它。如果您想要更真实的比较,您应该测量第一个示例的总执行时间,包括设置和编译 OpenCL 程序所需的时间。
这种初始化惩罚(这是 OpenCL 的运行时编译模型中固有的)在 Boost.Compute 中通过在运行时自动缓存已编译的内核(并且还可以选择将它们离线缓存以供下次程序运行时重用)有所减轻).打电话transform()
第一次调用后多次会快得多。
附言您也可以只使用 Boost.Compute 中的核心包装器类(如 device
和 context
)以及容器类(如 vector<T>
)并仍然运行您自己的自定义内核。
关于c++ - 性能 : boost. 计算对比opencl C++ 包装器,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/23901979/
在这段令人惊叹的视频 ( https://www.youtube.com/watch?v=udix3GZouik ) 中,Alex Blom 谈到了 Ember 在移动世界中的“黑客攻击”。 在 22
我们希望通过我们的应用收集使用情况统计信息。因此,我们希望在服务器端的某个地方跟踪用户操作。 就性能而言,哪个选项更合适: 在 App Engine 请求日志中跟踪用户操作。即为每个用户操作写入一个日
在针对对象集合的 LINQ 查询的幕后究竟发生了什么?它只是语法糖还是发生了其他事情使其更有效的查询? 最佳答案 您是指查询表达式,还是查询在幕后的作用? 查询表达式首先扩展为“普通”C#。例如: v
我正在构建一个简单的照片库应用程序,它在列表框中显示图像。 xaml 是:
对于基于 Web 的企业应用程序,使用“静态 Hashmap 存储对象” 和 apache java 缓存系统有何优缺点?哪一个最有利于性能并减少堆内存问题 例如: Map store=Applica
我想知道在性能方面存储类变量的最佳方式是什么。我的意思是,由于 Children() 函数,存储一个 div id 比查找所有其他类名更好。还是把类名写在变量里比较好? 例如这样: var $inne
我已经阅读了所有这些关于 cassandra 有多快的文章,例如单行读取可能需要大约 5 毫秒。 到目前为止,我不太关心我的网站速度,但是随着网站变得越来越大,一些页面开始需要相当多的查询,例如一个页
最近,我在缓存到内存缓存之前的查询一直需要很长时间才能处理!在这个例子中,它花费了 10 秒。在这种情况下,我要做的就是获得 10 个最近的点击。 我感觉它加载了所有 125,592 行然后只返回 1
我找了几篇文章(包括SA中的一些问题),试图找到基本操作的成本。 但是,我尝试制作自己的小程序,以便自己进行测试。在尝试测试加法和减法时,我遇到了一些问题,我用简单的代码向您展示了这一点
这个问题在这里已经有了答案: Will Java app slow down by presence of -Xdebug or only when stepping through code? (
我记得很久以前读过 with() 对 JavaScript 有一些严重的性能影响,因为它可能对范围堆栈进行非确定性更改。我很难找到最近对此的讨论。这仍然是真的吗? 最佳答案 与其说 with 对性能有
我们有一个数据仓库,其中包含非规范化表,行数从 50 万行到 6 多万行不等。我正在开发一个报告解决方案,因此出于性能原因我们正在使用数据库分页。我们的报告有搜索条件,并且我们已经创建了必要的索引,但
我有一条有效的 SQL 语句,但需要很长时间才能处理 我有一个 a_log 表和一个 people 表。我需要在 people 表中找到给定人员的每个 ID 的最后一个事件和关联的用户。 SELECT
很难说出这里问的是什么。这个问题是含糊的、模糊的、不完整的、过于宽泛的或修辞性的,无法以目前的形式得到合理的回答。如需帮助澄清此问题以便重新打开它,visit the help center 。 已关
通常当我建立一个站点时,我将所有的 CSS 放在一个文件中,并且一次性定义与一组元素相关的所有属性。像这样: #myElement { color: #fff; background-
两者之间是否存在任何性能差异: p { margin:0px; padding:0px; } 并省略最后的分号: p { margin:0px; padding:0px } 提前致谢!
我的应用程序 (PHP) 需要执行大量高精度数学运算(甚至可能出现一共100个数字) 通过这个论坛的最后几篇帖子,我发现我必须使用任何高精度库,如 BC Math 或 GMP,因为 float 类型不
我一直在使用 javamail 从 IMAP 服务器(目前是 GMail)检索邮件。 Javamail 非常快速地从服务器检索特定文件夹中的消息列表(仅 id),但是当我实际获取消息(仅包含甚至不包含
我非常渴望开发我的第一个 Ruby 应用程序,因为我的公司终于在内部批准了它的使用。 在我读到的关于 Ruby v1.8 之前的所有内容中,从来没有任何关于性能的正面评价,但我没有发现关于 1.9 版
我是 Redis 的新手,我有一个包含数百万个成员(member) ID、电子邮件和用户名的数据集,并且正在考虑将它们存储在例如列表结构中。我认为 list 和 sorted set 可能最适合我的情
我是一名优秀的程序员,十分优秀!