gpt4 book ai didi

c++ - 是否有一个真正有效的示例显示了 x86_64 上 ILP(指令级并行)的好处?

转载 作者:可可西里 更新时间:2023-11-01 17:10:21 25 4
gpt4 key购买 nike

众所周知,CPU 是流水线,如果命令序列彼此独立,它的工作效率最高 - 这称为 ILP(指令级并行):http://en.wikipedia.org/wiki/Instruction-level_parallelism

但是否有一个真正有效的示例显示 ILP 的好处,至少是合成示例,对于 CPU x86_64(但对于相同数量的 cmp/jne 在这两种情况下)?

我将编写以下示例 - 将数组的所有元素相加,但它没有显示出 ILP 的任何优势:http://ideone.com/fork/poWfsm

  • 顺序:
        for(i = 0; i < arr_size; i += 8) {
result += arr[i+0] + arr[i+1] +
arr[i+2] + arr[i+3] +
arr[i+4] + arr[i+5] +
arr[i+6] + arr[i+7];
}
  • 国际语言学院:
        register unsigned int v0, v1, v2, v3;
v0 = v1 = v2 = v3 = 0;
for(i = 0; i < arr_size; i += 8) {
v0 += arr[i+0] + arr[i+1];
v1 += arr[i+2] + arr[i+3];
v2 += arr[i+4] + arr[i+5];
v3 += arr[i+6] + arr[i+7];
}
result = v0+v1+v2+v3;

结果:

seq: 0.100000 sec, res: 1000000000, ipl: 0.110000 sec, faster 0.909091 X, res: 1000000000

seq: 0.100000 sec, res: 1000000000, ipl: 0.100000 sec, faster 1.000000 X, res: 1000000000

seq: 0.100000 sec, res: 1000000000, ipl: 0.110000 sec, faster 0.909091 X, res: 1000000000

seq: 0.100000 sec, res: 1000000000, ipl: 0.100000 sec, faster 1.000000 X, res: 1000000000

seq: 0.110000 sec, res: 1000000000, ipl: 0.110000 sec, faster 1.000000 X, res: 1000000000

seq: 0.100000 sec, res: 1000000000, ipl: 0.110000 sec, faster 0.909091 X, res: 1000000000

seq: 0.100000 sec, res: 1000000000, ipl: 0.110000 sec, faster 0.909091 X, res: 1000000000

seq: 0.110000 sec, res: 1000000000, ipl: 0.100000 sec, faster 1.100000 X, res: 1000000000

seq: 0.110000 sec, res: 1000000000, ipl: 0.100000 sec, faster 1.100000 X, res: 1000000000

seq: 0.110000 sec, res: 1000000000, ipl: 0.120000 sec, faster 0.916667 X, res: 1000000000

faster AVG: 0.975303

ILP 甚至比 Sequential 慢一点。

C 代码:http://ideone.com/fork/poWfsm

#include <time.h>
#include <stdio.h>
#include <stdlib.h>

int main() {
// create and init array
const size_t arr_size = 100000000;
unsigned int *arr = (unsigned int*) malloc(arr_size * sizeof(unsigned int));
size_t i, k;
for(i = 0; i < arr_size; ++i)
arr[i] = 10;

unsigned int result = 0;
clock_t start, end;
const int c_iterations = 10; // iterations of experiment
float faster_avg = 0;
// -----------------------------------------------------------------


for(k = 0; k < c_iterations; ++k) {
result = 0;

// Sequential
start = clock();

for(i = 0; i < arr_size; i += 8) {
result += arr[i+0] + arr[i+1] +
arr[i+2] + arr[i+3] +
arr[i+4] + arr[i+5] +
arr[i+6] + arr[i+7];
}

end = clock();
const float c_time_seq = (float)(end - start)/CLOCKS_PER_SEC;
printf("seq: %f sec, res: %u, ", c_time_seq, result);
// -----------------------------------------------------------------

result = 0;

// IPL-optimization
start = clock();

register unsigned int v0, v1, v2, v3;
v0 = v1 = v2 = v3 = 0;

for(i = 0; i < arr_size; i += 8) {

v0 += arr[i+0] + arr[i+1];
v1 += arr[i+2] + arr[i+3];
v2 += arr[i+4] + arr[i+5];
v3 += arr[i+6] + arr[i+7];


}
result = v0+v1+v2+v3;


end = clock();
const float c_time_ipl = (float)(end - start)/CLOCKS_PER_SEC;
const float c_faster = c_time_seq/c_time_ipl;

printf("ipl: %f sec, faster %f X, res: %u \n", c_time_ipl, c_faster, result);
faster_avg += c_faster;
}

faster_avg = faster_avg/c_iterations;
printf("faster AVG: %f \n", faster_avg);

return 0;
}

更新:

  • 顺序(反汇编程序 MS Visual Studio 2013):
    for (i = 0; i < arr_size; i += 8) {
result += arr[i + 0] + arr[i + 1] +
arr[i + 2] + arr[i + 3] +
arr[i + 4] + arr[i + 5] +
arr[i + 6] + arr[i + 7];
}

000000013F131080 mov ecx,dword ptr [rdx-18h]
000000013F131083 lea rdx,[rdx+20h]
000000013F131087 add ecx,dword ptr [rdx-34h]
000000013F13108A add ecx,dword ptr [rdx-30h]
000000013F13108D add ecx,dword ptr [rdx-2Ch]
000000013F131090 add ecx,dword ptr [rdx-28h]
000000013F131093 add ecx,dword ptr [rdx-24h]
000000013F131096 add ecx,dword ptr [rdx-1Ch]
000000013F131099 add ecx,dword ptr [rdx-20h]
000000013F13109C add edi,ecx
000000013F13109E dec r8
000000013F1310A1 jne main+80h (013F131080h)
  • ILP(反汇编程序 MS Visual Studio 2013):
    for (i = 0; i < arr_size; i += 8) {
v0 += arr[i + 0] + arr[i + 1];
000000013F1310F0 mov ecx,dword ptr [rdx-0Ch]
v1 += arr[i + 2] + arr[i + 3];
v2 += arr[i + 4] + arr[i + 5];
000000013F1310F3 mov eax,dword ptr [rdx+8]
000000013F1310F6 lea rdx,[rdx+20h]
000000013F1310FA add ecx,dword ptr [rdx-28h]
000000013F1310FD add eax,dword ptr [rdx-1Ch]
000000013F131100 add ebp,ecx
000000013F131102 mov ecx,dword ptr [rdx-24h]
000000013F131105 add ebx,eax
000000013F131107 add ecx,dword ptr [rdx-20h]
v3 += arr[i + 6] + arr[i + 7];
000000013F13110A mov eax,dword ptr [rdx-10h]
v3 += arr[i + 6] + arr[i + 7];
000000013F13110D add eax,dword ptr [rdx-14h]
000000013F131110 add esi,ecx
000000013F131112 add edi,eax
000000013F131114 dec r8
000000013F131117 jne main+0F0h (013F1310F0h)
}
result = v0 + v1 + v2 + v3;

编译器命令行:

/GS /GL /W3 /Gy /Zc:wchar_t /Zi /Gm- /O2 /Ob2 /sdl /Fd"x64\Release\vc120.pdb" /fp:precise /D "_MBCS" /errorReport:prompt /WX- /Zc:forScope /Gd /Oi /MT /Fa"x64\Release\" /EHsc /nologo /Fo"x64\Release\" /Ot /Fp"x64\Release\IPL_reduce_test.pch" 

答案的附加说明:

这个简单的例子展示了 50000000 双元素数组的 Unroll-loop 和 Unroll-loop+ILP 之间的 ILP 的好处:http://ideone.com/LgTP6b

faster AVG: 1.152778

  • False-Sequential 可以通过 CPU 管道(Disassembler MS Visual Studio 2013)进行优化 - 在每次迭代中添加 8 个元素使用临时寄存器 xmm0 然后添加到结果 xmm6,即可以使用 Register renaming :
result += arr[i + 0] + arr[i + 1] + arr[i + 2] + arr[i + 3] +
arr[i + 4] + arr[i + 5] + arr[i + 6] + arr[i + 7];
000000013FBA1090 movsd xmm0,mmword ptr [rcx-10h]
000000013FBA1095 add rcx,40h
000000013FBA1099 addsd xmm0,mmword ptr [rcx-48h]
000000013FBA109E addsd xmm0,mmword ptr [rcx-40h]
000000013FBA10A3 addsd xmm0,mmword ptr [rcx-38h]
000000013FBA10A8 addsd xmm0,mmword ptr [rcx-30h]
000000013FBA10AD addsd xmm0,mmword ptr [rcx-28h]
000000013FBA10B2 addsd xmm0,mmword ptr [rcx-20h]
000000013FBA10B7 addsd xmm0,mmword ptr [rcx-18h]
000000013FBA10BC addsd xmm6,xmm0
000000013FBA10C0 dec rdx
000000013FBA10C3 jne main+90h (013FBA1090h)
  • True-Sequential 无法通过 CPU 管道(Disassembler MS Visual Studio 2013)优化 - 在每次迭代中添加 8 个元素使用结果寄存器 xmm6,即不能使用 Register renaming :
            result += arr[i + 0];
000000013FFC1090 addsd xmm6,mmword ptr [rcx-10h]
000000013FFC1095 add rcx,40h
result += arr[i + 1];
000000013FFC1099 addsd xmm6,mmword ptr [rcx-48h]
result += arr[i + 2];
000000013FFC109E addsd xmm6,mmword ptr [rcx-40h]
result += arr[i + 3];
000000013FFC10A3 addsd xmm6,mmword ptr [rcx-38h]
result += arr[i + 4];
000000013FFC10A8 addsd xmm6,mmword ptr [rcx-30h]
result += arr[i + 5];
000000013FFC10AD addsd xmm6,mmword ptr [rcx-28h]
result += arr[i + 6];
000000013FFC10B2 addsd xmm6,mmword ptr [rcx-20h]
result += arr[i + 7];
000000013FFC10B7 addsd xmm6,mmword ptr [rcx-18h]
000000013FFC10BC dec rdx
000000013FFC10BF jne main+90h (013FFC1090h)

最佳答案

在大多数 Intel 处理器上,执行浮点加法需要 3 个周期。但如果它们是独立的,它最多可以维持 1 个/周期。

我们可以通过在关键路径上放置浮点加法来轻松演示 ILP。


环境:

  • 海湾合作委员会 4.8.2:-O2
  • 桑迪桥至强

确保编译器不会进行不安全的浮点优化。

#include <iostream>
using namespace std;

#include <time.h>

const int iterations = 1000000000;

double sequential(){
double a = 2.3;
double result = 0;

for (int c = 0; c < iterations; c += 4){
// Every add depends on the previous add. No ILP is possible.
result += a;
result += a;
result += a;
result += a;
}

return result;
}
double optimized(){
double a = 2.3;
double result0 = 0;
double result1 = 0;
double result2 = 0;
double result3 = 0;

for (int c = 0; c < iterations; c += 4){
// 4 independent adds. Up to 4 adds can be run in parallel.
result0 += a;
result1 += a;
result2 += a;
result3 += a;
}

return result0 + result1 + result2 + result3;
}

int main(){

clock_t start0 = clock();
double sum0 = sequential();
clock_t end0 = clock();
cout << "sum = " << sum0 << endl;
cout << "sequential time: " << (double)(end0 - start0) / CLOCKS_PER_SEC << endl;

clock_t start1 = clock();
double sum1 = optimized();
clock_t end1 = clock();
cout << "sum = " << sum1 << endl;
cout << "optimized time: " << (double)(end1 - start1) / CLOCKS_PER_SEC << endl;

}

输出:

sum = 2.3e+09
sequential time: 0.948138
sum = 2.3e+09
optimized time: 0.317293

请注意差异几乎正好是 3 倍。这是因为浮点加法的 3 个周期延迟和 1 个周期吞吐量。

顺序版本的 ILP 很少,因为所有浮点加法都在关键路径上。 (每个添加都需要等到前一个添加完成)展开的版本有 4 个独立的依赖链,最多有 4 个独立的添加——所有这些都可以并行运行。只需 3 个即可使处理器内核饱和。

关于c++ - 是否有一个真正有效的示例显示了 x86_64 上 ILP(指令级并行)的好处?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/27748020/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com