- android - RelativeLayout 背景可绘制重叠内容
- android - 如何链接 cpufeatures lib 以获取 native android 库?
- java - OnItemClickListener 不起作用,但 OnLongItemClickListener 在自定义 ListView 中起作用
- java - Android 文件转字符串
我在使用 hadoop 时使用了 MultipleInputs 。因为我有多个映射器分配给不同的输入。我想知道 EMR 是否也支持它。
在hadoop中我是这样操作的。这些是我的不同文件的映射器。在这里我需要这些,因为我必须对不同的输入执行一些操作,这些输入应该分别识别输入并在 reducer 中执行单独的操作。
public static class Map1 extends Mapper<Object, Text, Text, Text> {
Text out=new Text();
Text value1= new Text();
public void map(Object key,Text value,Context context) throws IOException,InterruptedException
{
try
{
String line= value.toString();
Configuration conf=context.getConfiguration();
Float CVsTime=conf.getFloat("CVstartTime",0);
String dimension=conf.get("CVdimension");
String CVfilter=conf.get("CVfilters");
Float CVeTime=conf.getFloat("CVendTime",0);
Float CVstartTime=CVsTime;
Float CVendTime=CVeTime;
JSONParser parser = new JSONParser();
Object obj=parser.parse(line);
JSONObject jsonObject=(JSONObject)obj;
Object datasttime=jsonObject.get("client_received_start_timestamp");
String ddimension="";
Object odimension=jsonObject.get(dimension);
if(odimension!=null)
ddimension=odimension.toString();
String dst=datasttime.toString();
dst=dst.substring(0,6)+"."+dst.substring(6,dst.length());
String metric=conf.get("CVmetric");
Float tim=0.0f,/* sttime=0,endtime=0,*/CVval=0.0f;
tim=Float.parseFloat(dst.toString());
Object met=jsonObject.get(metric);
CVval=Float.parseFloat(met.toString());
int CVfiltercount = CVfilter.length() - CVfilter.replace(" ", "").length();
String CVfilters[][]=new String[CVfiltercount][];
StringTokenizer tokenizer=new StringTokenizer(CVfilter);
int k=0;
while(tokenizer.hasMoreTokens())
{
String temptoken=tokenizer.nextToken();
if(temptoken.indexOf("=")!=-1)
{
CVfilters[k]=temptoken.split("=");
CVfilters[k][1]=CVfilters[k][1].replace("\"","");
k++;
}
}
int count=k;
int flag=0;
for(int i=0;i<k;i++)
{
Object filter=jsonObject.get(CVfilters[i][0]);
if(filter==null)
{
flag=1;
break;
}
if(!filter.toString().equals(CVfilters[i][1]))
{
flag=1;
break;
}
}
if((odimension!=null)&&(CVstartTime<=tim)&&(CVendTime>=tim)&&(flag==0))
{
value1.set("key1"+" "+tim.toString()+" "+CVval.toString());
out.set(ddimension);
context.write(out,value1);
}
flag=0;
}
catch(Exception e)
{
e.printStackTrace();
}
}
}
public static class Map2 extends Mapper<Object, Text, Text, Text>
{
Text out = new Text();
Text value2= new Text();
public void map(Object key,Text value,Context context) throws IOException,InterruptedException
{
try
{
Configuration conf=context.getConfiguration();
Float CTVstartTime=conf.getFloat("CTVstartTime",0);
Float CTVendTime=conf.getFloat("CTVendTime",0);
String CTVfilter=conf.get("CTVfilters");
String dimension=conf.get("CTVdimension");
String line= value.toString();
JSONParser parser = new JSONParser();
Object obj=parser.parse(line);
JSONObject jsonObject=(JSONObject)obj;
Object datasttime=jsonObject.get("client_received_start_timestamp");
Object odimension=jsonObject.get(dimension);
String ddimension="";
if(odimension!=null)
ddimension=odimension.toString();
String dst=datasttime.toString();
dst=dst.substring(0,6)+"."+dst.substring(6,dst.length());
String metric=conf.get("CTVmetric");
Float tim=0.0f,/*sttime=0,endtime=0,*/ctvvalue=0.0f;
StringTokenizer st=new StringTokenizer(line);
tim=Float.parseFloat(dst.toString());
Object met=jsonObject.get(metric);
ctvvalue=Float.parseFloat(met.toString());
int CTVfiltercount = CTVfilter.length() - CTVfilter.replace(" ", "").length();
StringTokenizer tokenizer=new StringTokenizer(CTVfilter);
String CTVfilters[][]=new String[CTVfiltercount][];
int k=0;
while(tokenizer.hasMoreTokens())
{
String temptoken=tokenizer.nextToken();
if(temptoken.indexOf("=")!=-1)
{
CTVfilters[k]=temptoken.split("=");
CTVfilters[k][1]=CTVfilters[k][1].replace("\"","");
k++;
}
}
int count=k;
int flag=0;
for(int i=0;i<k;i++)
{
Object filter=jsonObject.get(CTVfilters[i][0]);
if(filter==null)
{
flag=1;
break;
}
if(!filter.toString().equals(CTVfilters[i][1]))
flag=1;
}
if((odimension!=null)&&(CTVstartTime<=tim)&&(CTVendTime>=tim)&&(flag==0))
{
value2.set("key2"+" "+tim.toString()+" "+ctvvalue.toString());
out.set(ddimension);
context.write(out,value2);
}
}
catch(Exception e)
{
e.printStackTrace();
}
}
}
我在 hadoop 中使用 MultipleInputs 的主要部分。在这里,我为不同的输入设置了一个单独的映射器类,即 Map1.class 和 Map2.class
job.setJobName("alert");
String MapPath1[]=args[1].split(",");
String MapPath2[];
MapPath2 = type.equals("comparative") ? args[2].split(",") : null;
Path outputPath;
if (MapPath2!=null)
outputPath = new Path(args[3]);
else
outputPath = new Path(args[2]);
job.setMapperClass(Map1.class);
if(type.equals("comparative"))
job.setMapperClass(Map2.class);
job.setReducerClass(Reduce.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(Text.class);
job.setOutputKeyClass(NullWritable.class);
job.setOutputValueClass(Text.class);
for(int i=0;i<MapPath1.length;i++)
MultipleInputs.addInputPath(job,new Path(MapPath1[i]),TextInputFormat.class,Map1.class);
if(type.equals("comparative"))
for(int i=0;i<MapPath2.length;i++)
MultipleInputs.addInputPath(job,new Path(MapPath2[i]),TextInputFormat.class,Map2.class);
FileOutputFormat.setOutputPath(job, outputPath);
在这里,我采用了两个不同的输入路径,并为它们分配了上面定义的不同映射器,它工作得很好。我被要求找出在 EMR 中是否也可以这样做,而我之前没有在 EMR 上做过任何事情。我尝试用谷歌搜索它,但找不到任何有用的东西。我想知道是否有与 EMR 相同的东西或任何解决方法。除了我不想使用 (Path filePath = ((FileSplit) context.getInputSplit()).getPath();) 任何我试图找到当前输入的路径以确定哪个数据 block 或文件的地方它属于。
感谢任何帮助。
最佳答案
当然支持,EMR 就是你运行 Hadoop 的地方。您的问题相当于说“我可以在笔记本电脑和台式机上使用网络浏览器吗”。嗯,这就是我从你的问题中了解到的。
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/emr-plan-hadoop-differences.html
关于java - EMR 中的多个输入和多个映射器类(EMR 中是否有类似 Hadoop 上的 MultipleInputs 的东西),我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/24795360/
我们有数据(此时未分配)要转换/聚合/透视到 wazoo。 我在 www 上看了看,我问的所有答案都指向 hadoop 可扩展、运行便宜(没有 SQL 服务器机器和许可证)、快速(如果你有足够的数据)
这很明显,我们都同意我们可以将 HDFS + YARN + MapReduce 称为 Hadoop。但是,Hadoop 生态系统中的其他不同组合和其他产品会怎样? 例如,HDFS + YARN + S
如果 es-hadoop 只是连接到 HDFS 的 Hadoop 连接器,它如何支持 Hadoop 分析? 最佳答案 我假设您指的是 this project .在这种情况下,ES Hadoop 项目
看完this和 this论文,我决定我想在 MapReduce 上为大型数据集实现分布式体积渲染设置作为我的本科论文工作。 Hadoop 是一个合理的选择吗? Java 不会扼杀一些性能提升或使与 C
我一直在尝试查找有关如何通过命令行提交 hadoop 作业的信息。 我知道命令 - hadoop jar jar-file 主类输入输出 还有另一个命令,我正在尝试查找有关它的信息,但未能找到 - h
Hadoop 服务器在 Kubernetes 中。而Hadoop客户端位于外网。所以我尝试使用 kubernetes-service 来使用 Hadoop 服务器。但是 hadoop fs -put
有没有人遇到奇怪的环境问题,在调用 hadoop 命令时被迫使用 SU 而不是 SUDO? sudo su -c 'hadoop fs -ls /' hdfs Found 4 itemsdrwxr-x
在更改 mapred-site.xml 中的属性后,我给出了一个 tar.bz2 文件、.gz 和 tar.gz 文件作为输入。以上似乎都没有奏效。我假设这里发生的是 hadoop 作为输入读取的记录
如何在 Hadoop Pipes 中获取正在 hadoop 映射器 中执行的输入文件 名称? 我可以很容易地在基于 java 的 map reducer 中获取文件名,比如 FileSplit fil
我想使用 MapReduce 方法分析连续的数据流(通过 HTTP 访问),因此我一直在研究 Apache Hadoop。不幸的是,Hadoop 似乎期望以固定大小的输入文件开始作业,而不是能够在新数
名称节点可以执行任务吗?默认情况下,任务在集群的数据节点上执行。 最佳答案 假设您正在询问MapReduce ... 使用YARN,MapReduce任务在应用程序主数据库中执行,而不是在nameno
我有一个关系A包含 (zip-code). 我还有另一个关系B包含 (name:gender:zip-code) (x:m:1234) (y:f:1234) (z:m:1245) (s:f:1235)
我是hadoop地区的新手。您能帮我负责(k2,list[v2,v2,v2...])形式的输出(意味着将键及其所有关联值组合在一起)的责任是吗? 谢谢。 最佳答案 这是Hadoop的MapReduce
因此,我一直在尝试编写一个hadoop程序,该程序将输入作为一个包含许多文件的文件,并且我希望hadoop程序的输出仅是输入文件的一行。但是我还没有做到这一点。我也不想去 reducer 课。如果有人
我使用的输入文本文件的内容是 1 "Come 1 "Defects," 1 "I 1 "Information 1 "J" 2 "Plain 5 "Project 1
谁能告诉我以下grep命令的作用: $ bin/hadoop jar hadoop-*-examples.jar grep input output 'dfs[a-z.]+' 最佳答案 http:/
我不了解mapreducer的基本功能,mapreducer是否有助于将文件放入HDFS 或mapreducer仅有助于分析HDFS中现有文件中的内容 我对hadoop非常陌生,任何人都可以指导我理解
CopyFromLocal将从本地文件系统上载数据。 不要放会从任何文件上传数据,例如。本地FS,亚马逊S3 或仅来自本地fs ??? 最佳答案 请找到两个命令的用法。 put ======= Usa
我开始研究hadoop mapreduce。 我是Java和hadoop的初学者,并且了解hadoop mapreduce的编码,但是有兴趣了解它在云中的内部工作方式。 您能否分享一些很好的链接来说明
我一直在寻找Hadoop mapreduce类的类路径。我正在使用Hortonworks 2.2.4版沙箱。我需要这样的类路径来运行我的javac编译器: javac -cp (CLASS_PATH)
我是一名优秀的程序员,十分优秀!