gpt4 book ai didi

hadoop - java中通过Spark存储orc格式

转载 作者:可可西里 更新时间:2023-11-01 16:52:15 25 4
gpt4 key购买 nike

我正在使用 spark 1.3.1,我想将数据作为 ORC 格式存储在 hive 中..

以下显示错误的行,看起来 orc 不支持作为 spark 1.3.1 中的数据源

dataframe.save("/apps/hive/warehouse/person_orc_table_5", "orc");

java.lang.RuntimeException: Failed to load class for data source: orc
at scala.sys.package$.error(package.scala:27)
at org.apache.spark.sql.sources.ResolvedDataSource$.lookupDataSource(ddl.scala:194)
at org.apache.spark.sql.sources.ResolvedDataSource$.apply(ddl.scala:237)
at org.apache.spark.sql.DataFrame.save(DataFrame.scala:1196)
at org.apache.spark.sql.DataFrame.save(DataFrame.scala:1156)
at SparkOrcHive.main(SparkOrcHive.java:62)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:606)
at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:577)
at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:174)
at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:197)
at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:112)
at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)

Spark 1.4 有..

write.format("orc").partitionBy("age").save("peoplePartitioned") 

以兽人格式存储..

有没有办法在 spark 1.3.1 中以 ORC 格式存储文件??

谢谢,

最佳答案

(
dataframe.select("name", "age")
.save("/apps/hive/warehouse/orc_table",
"org.apache.spark.sql.hive.orc",
SaveMode.Append);
)

编辑:

我正在从 hdfs 获取 txt 文件并将数据以 orc 格式写入配置单元表。下面的代码在 spark 1.3.1 中对我来说工作正常

Java 类

package com.test.spark;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.SaveMode;
import org.apache.spark.sql.hive.HiveContext;

/**
* Created by ankit on 08/02/16.
*/
public class SparkOrcHiveInsert {

public static void main(String[] args) {

String tableName = "person_orc";
String tablePath = "/apps/hive/warehouse/" + tableName;

SparkConf conf = new SparkConf().setAppName("ORC Demo").setMaster("local");
JavaSparkContext sc = new JavaSparkContext(conf);

HiveContext hiveContext = new org.apache.spark.sql.hive.HiveContext(sc.sc());

JavaRDD<Person> people = sc.textFile("hdfs://~:8020/tmp/person.txt").map(
new Function<String, Person>() {
public Person call(String line) throws Exception {
return process(line);
}
});


DataFrame schemaPeople = hiveContext.createDataFrame(people, Person.class);
schemaPeople.select("id","name", "age").save(tablePath, "org.apache.spark.sql.hive.orc", SaveMode.Append);
}

private static Person process(String line) {
String[] parts = line.split(",");
Person person = new Person();
person.setId(Integer.parseInt(parts[0].trim()));
person.setName(parts[1]);
person.setAge(Integer.parseInt(parts[2].trim()));

return person;
}
}

Hive 表脚本

create table person_orc (
id int,
name string,
age int
) stored as orc tblproperties ("orc.compress"="NONE");

Spark 提交命令

~/spark/bin/spark-submit --master local  --class com.test.spark.SparkOrcHiveInsert spark-orc-hive-1.0.jar 

关于hadoop - java中通过Spark存储orc格式,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/32079011/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com