gpt4 book ai didi

java - Mapreduce java 程序搜索 QuadTree 索引并运行 GeometryEngine.contains 以使用 wkt 文件确认多边形中的点

转载 作者:可可西里 更新时间:2023-11-01 16:42:44 24 4
gpt4 key购买 nike

这篇文章是针对我之前的问题建议的 map reduce 实现:“How to optimize scan of 1 huge file / table in Hive to confirm/check if lat long point is contained in a wkt geometry shape

我不太会写map-reduce的java程序,主要使用Hive或者Pig或者spark在Hadoop生态系统中开发。给出手头任务的背景:我试图将每个纬度/经度 ping 关联到相应的 ZIP 邮政编码。我有一个包含所有 zip 信息的 WKT 多边形形状文件 (500 MB)。我已经将它加载到 Hive 中,并且可以使用 ST_Contains(polygon, point) 进行连接。但是,需要很长时间才能完成。为了克服这个瓶颈,我尝试利用 ESRI 中的示例(“https://github.com/Esri/gis-tools-for-hadoop/tree/master/samples/point-in-polygon-aggregation-mr”)构建四叉树索引来搜索从多边形中的经纬度派生的点。

我设法编写了代码,但它阻塞了集群的 Java 堆内存。任何关于改进代码或寻找不同方法的建议将不胜感激:错误信息:错误:Java 堆空间容器被 ApplicationMaster 杀死。根据要求杀死容器。退出代码为 143容器以非零退出代码 143 退出

我的代码:

public class MapperClass extends Mapper<LongWritable, Text, Text, IntWritable> {

// column indices for values in the text file
int longitudeIndex;
int latitudeIndex;
int wktZip;
int wktGeom;
int wktLineCount;
int wktStateID;

// in boundaries.wkt, the label for the polygon is "wkt"
//creating ArrayList to hold details of the file
ArrayList<ZipPolyClass> nodes = new ArrayList<ZipPolyClass>();

String labelAttribute;
EsriFeatureClass featureClass;
SpatialReference spatialReference;
QuadTree quadTree;
QuadTreeIterator quadTreeIter;
BufferedReader csvWkt;

// class to store all the values from wkt file and calculate geometryFromWKT
public class ZipPolyClass {

public String zipCode;
public String wktPoly;
public String stateID;
public int indexJkey;
public Geometry wktGeomObj;

public ZipPolyClass(int ijk, String z, String w, String s ){
zipCode = z;
wktPoly = w;
stateID = s;
indexJkey = ijk;
wktGeomObj = GeometryEngine.geometryFromWkt(wktPoly, 0, Geometry.Type.Unknown);
}

}


//building quadTree Index from WKT multiPolygon and creating an iterator
private void buildQuadTree(){
quadTree = new QuadTree(new Envelope2D(-180, -90, 180, 90), 8);

Envelope envelope = new Envelope();

int j=0;

while(j<nodes.size()){
nodes.get(j).wktGeomObj.queryEnvelope(envelope);
quadTree.insert(j, new Envelope2D(envelope.getXMin(), envelope.getYMin(), envelope.getXMax(), envelope.getYMax()));
}

quadTreeIter = quadTree.getIterator();
}


/**
* Query the quadtree for the feature containing the given point
*
* @param pt point as longitude, latitude
* @return index to feature in featureClass or -1 if not found
*/
private int queryQuadTree(Point pt)
{
// reset iterator to the quadrant envelope that contains the point passed
quadTreeIter.resetIterator(pt, 0);

int elmHandle = quadTreeIter.next();

while (elmHandle >= 0){
int featureIndex = quadTree.getElement(elmHandle);

// we know the point and this feature are in the same quadrant, but we need to make sure the feature
// actually contains the point
if (GeometryEngine.contains(nodes.get(featureIndex).wktGeomObj, pt, spatialReference)){
return featureIndex;
}

elmHandle = quadTreeIter.next();
}

// feature not found
return -1;
}


/**
* Sets up mapper with filter geometry provided as argument[0] to the jar
*/
@Override
public void setup(Context context)
{
Configuration config = context.getConfiguration();

spatialReference = SpatialReference.create(4326);

// first pull values from the configuration
String featuresPath = config.get("sample.features.input");
//get column reference from driver class
wktZip = config.getInt("sample.features.col.zip", 0);
wktGeom = config.getInt("sample.features.col.geometry", 18);
wktStateID = config.getInt("sample.features.col.stateID", 3);
latitudeIndex = config.getInt("samples.csvdata.columns.lat", 5);
longitudeIndex = config.getInt("samples.csvdata.columns.long", 6);

FSDataInputStream iStream = null;

try {
// load the text WKT file provided as argument 0
FileSystem hdfs = FileSystem.get(config);
iStream = hdfs.open(new Path(featuresPath));
BufferedReader br = new BufferedReader(new InputStreamReader(iStream));
String wktLine ;
int i=0;

while((wktLine = br.readLine()) != null){
String [] val = wktLine.split("\\|");
String qtZip = val[wktZip];
String poly = val[wktGeom];
String stID = val[wktStateID];
ZipPolyClass zpc = new ZipPolyClass(i, qtZip, poly, stID);
nodes.add(i,zpc);
i++; // increment in the loop before end
}

}
catch (Exception e)
{
e.printStackTrace();
}
finally
{
if (iStream != null)
{
try {
iStream.close();
} catch (IOException e) { }
}
}

// build a quadtree of our features for fast queries
if (!nodes.isEmpty()) {
buildQuadTree();
}
}

@Override
public void map(LongWritable key, Text val, Context context)
throws IOException, InterruptedException {

/*
* The TextInputFormat we set in the configuration, by default, splits a text file line by line.
* The key is the byte offset to the first character in the line. The value is the text of the line.
*/

String line = val.toString();
String [] values = line.split(",");

// get lat long from file and convert to float
float latitude = Float.parseFloat(values[latitudeIndex]);
float longitude = Float.parseFloat(values[longitudeIndex]);

// Create our Point directly from longitude and latitude
Point point = new Point(longitude, latitude);


int featureIndex = queryQuadTree(point);

// Each map only processes one record at a time, so we start out with our count
// as 1. Since we have a distinct record file we will not run reducer
IntWritable one = new IntWritable(1);

if (featureIndex >= 0){

String zipTxt =nodes.get(featureIndex).zipCode;
String stateIDTxt = nodes.get(featureIndex).stateID;
String latTxt = values[latitudeIndex];
String longTxt = values[longitudeIndex];
String pointTxt = point.toString();
String name;
name = zipTxt+"\t"+stateIDTxt+"\t"+latTxt+"\t"+longTxt+ "\t" +pointTxt;

context.write(new Text(name), one);
} else {
context.write(new Text("*Outside Feature Set"), one);
}
}
}

最佳答案

我能够通过将 arrayList < classObject > 修改为仅包含 arrayList < geometry > 类型来解决内存不足问题。

创建一个类对象(大约 50k)来保存文本文件的每一行,消耗了所有的 java 堆内存。进行此更改后,即使在 1 节点虚拟沙箱中,代码也能正常运行。我能够在大约 6 分钟内处理大约 4000 万行。

关于java - Mapreduce java 程序搜索 QuadTree 索引并运行 GeometryEngine.contains 以使用 wkt 文件确认多边形中的点,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/39253652/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com