gpt4 book ai didi

c++ - 分离轴定理快把我逼疯了!

转载 作者:可可西里 更新时间:2023-11-01 16:40:06 26 4
gpt4 key购买 nike

我正在研究用于 2D 游戏的分离轴定理的实现。它有点管用,但只是有点。

我是这样使用的:

bool penetration = sat(c1, c2) && sat(c2, c1);

其中c1c2都是Convex类型,定义为:

class Convex
{
public:
float tx, ty;
public:
std::vector<Point> p;
void translate(float x, float y) {
tx = x;
ty = y;
}
};

(Pointfloat x,float y的结构)

点按顺时针方向输入。

我当前的代码(忽略 Qt 调试):

bool sat(Convex c1, Convex c2, QPainter *debug)
{
//Debug
QColor col[] = {QColor(255, 0, 0), QColor(0, 255, 0), QColor(0, 0, 255), QColor(0, 0, 0)};
bool ret = true;

int c1_faces = c1.p.size();
int c2_faces = c2.p.size();

//For every face in c1
for(int i = 0; i < c1_faces; i++)
{
//Grab a face (face x, face y)
float fx = c1.p[i].x - c1.p[(i + 1) % c1_faces].x;
float fy = c1.p[i].y - c1.p[(i + 1) % c1_faces].y;

//Create a perpendicular axis to project on (axis x, axis y)
float ax = -fy, ay = fx;

//Normalize the axis
float len_v = sqrt(ax * ax + ay * ay);
ax /= len_v;
ay /= len_v;

//Debug graphics (ignore)
debug->setPen(col[i]);
//Draw the face
debug->drawLine(QLineF(c1.tx + c1.p[i].x, c1.ty + c1.p[i].y, c1.p[(i + 1) % c1_faces].x + c1.tx, c1.p[(i + 1) % c1_faces].y + c1.ty));
//Draw the axis
debug->save();
debug->translate(c1.p[i].x, c1.p[i].y);
debug->drawLine(QLineF(c1.tx, c1.ty, ax * 100 + c1.tx, ay * 100 + c1.ty));
debug->drawEllipse(QPointF(ax * 100 + c1.tx, ay * 100 + c1.ty), 10, 10);
debug->restore();

//Carve out the min and max values
float c1_min = FLT_MAX, c1_max = FLT_MIN;
float c2_min = FLT_MAX, c2_max = FLT_MIN;

//Project every point in c1 on the axis and store min and max
for(int j = 0; j < c1_faces; j++)
{
float c1_proj = (ax * (c1.p[j].x + c1.tx) + ay * (c1.p[j].y + c1.ty)) / (ax * ax + ay * ay);
c1_min = min(c1_proj, c1_min);
c1_max = max(c1_proj, c1_max);
}

//Project every point in c2 on the axis and store min and max
for(int j = 0; j < c2_faces; j++)
{
float c2_proj = (ax * (c2.p[j].x + c2.tx) + ay * (c2.p[j].y + c2.ty)) / (ax * ax + ay * ay);
c2_min = min(c2_proj, c2_min);
c2_max = max(c2_proj, c2_max);
}

//Return if the projections do not overlap
if(!(c1_max >= c2_min && c1_min <= c2_max))
ret = false; //return false;
}
return ret; //return true;
}

我做错了什么?它完美地记录了碰撞,但在一个边缘上过于敏感(在我使用三角形和菱形的测试中):

//Triangle
push_back(Point(0, -150));
push_back(Point(0, 50));
push_back(Point(-100, 100));

//Diamond
push_back(Point(0, -100));
push_back(Point(100, 0));
push_back(Point(0, 100));
push_back(Point(-100, 0));

我为此患上了 super 多动症,请帮帮我 :)

http://u8999827.fsdata.se/sat.png

最佳答案

好吧,我第一次错了。查看您的失败案例图片,很明显存在一个分离轴并且是法线之一(三角形长边的法线)。投影是正确的,但是您的边界不正确。

我认为错误在这里:

float c1_min = FLT_MAX, c1_max = FLT_MIN;
float c2_min = FLT_MAX, c2_max = FLT_MIN;

FLT_MIN is the smallest normal positive number可以用 float 表示,而不是最负数。事实上你需要:

float c1_min = FLT_MAX, c1_max = -FLT_MAX;
float c2_min = FLT_MAX, c2_max = -FLT_MAX;

对于 C++ 甚至更好

float c1_min = std::numeric_limits<float>::max(), c1_max = -c1_min;
float c2_min = std::numeric_limits<float>::max(), c2_max = -c2_min;

因为您可能会在轴上看到负投影。

关于c++ - 分离轴定理快把我逼疯了!,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/4375876/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com