- android - RelativeLayout 背景可绘制重叠内容
- android - 如何链接 cpufeatures lib 以获取 native android 库?
- java - OnItemClickListener 不起作用,但 OnLongItemClickListener 在自定义 ListView 中起作用
- java - Android 文件转字符串
我是 Hadoop 的新手,正在编写 MapReduce 作业,我遇到了一个问题,它似乎是 reducers context.write 方法正在将正确的值更改为不正确的值。
MapReduce 作业应该做什么?
(int wordCount)
(int counter_dist)
(int counter_startZ)
(int counter_less4)
所有这些都必须在单个 MapReduce 作业中完成。
正在分析的文本文件
Hello how zou zou zou zou how are you
正确输出:wordCount = 9
counter_dist = 5
counter_startZ = 4
counter_less4 = 4
映射器类
public class WordCountMapper extends Mapper <Object, Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
@Override
public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
String hasKey = itr.nextToken();
word.set(hasKey);
context.write(word, one);
}
}
}
reducer 类
为了调试我的代码,我打印了很多语句来检查每个点的值。下面提供了标准输出代码。
public class WordCountReducer extends Reducer <Text, IntWritable, Text, IntWritable> {
int wordCount = 0; // Total number of words
int counter_dist = 0; // Number of distinct words in the corpus
int counter_startZ = 0; // Number of words that start with letter Z
int counter_less4 = 0; // Number of words that appear less than 4
@Override
public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
int repeatedWords = 0;
System.out.println("###Reduce method starts");
System.out.println("Values: wordCount:" + wordCount + " counter_dist:" + counter_dist + " counter_startZ:" + counter_startZ + " counter_less4:" + counter_less4 + " (start)");
for (IntWritable val : values){
System.out.println("Key: " + key.toString());
repeatedWords++;
wordCount += val.get();
if(key.toString().startsWith("z") || key.toString().startsWith("Z")){
counter_startZ++;
}
System.out.println("Values: wordCount:" + wordCount + " counter_dist:" + counter_dist + " counter_startZ:" + counter_startZ + " counter_less4:" + counter_less4 + " (end of loop)");
}
counter_dist++;
if(repeatedWords < 4){
counter_less4++;
}
System.out.println("Values: wordCount:" + wordCount + " counter_dist:" + counter_dist + " counter_startZ:" + counter_startZ + " counter_less4:" + counter_less4 + " repeatedWords:" + repeatedWords + " (end)");
System.out.println("###Reduce method ends\n");
}
@Override
public void cleanup(Context context) throws IOException, InterruptedException{
System.out.println("###CLEANUP: wordCount: " + wordCount);
System.out.println("###CLEANUP: counter_dist: " + counter_dist);
System.out.println("###CLEANUP: counter_startZ: " + counter_startZ);
System.out.println("###CLEANUP: counter_less4: " + counter_less4);
context.write(new Text("Total words: "), new IntWritable(wordCount));
context.write(new Text("Distinct words: "), new IntWritable(counter_dist));
context.write(new Text("Starts with Z: "), new IntWritable(counter_startZ));
context.write(new Text("Appears less than 4 times:"), new IntWritable(counter_less4));
}
}
Stdout 日志,我正在使用它进行调试
###Reduce method starts
Values: wordCount:0 counter_dist:0 counter_startZ:0 counter_less4:0 (start)
Key: Hello
Values: wordCount:1 counter_dist:0 counter_startZ:0 counter_less4:0 (end of loop)
Values: wordCount:1 counter_dist:1 counter_startZ:0 counter_less4:1 repeatedWords:1 (end)
###Reduce method ends
###Reduce method starts
Values: wordCount:1 counter_dist:1 counter_startZ:0 counter_less4:1 (start)
Key: are
Values: wordCount:2 counter_dist:1 counter_startZ:0 counter_less4:1 (end of loop)
Values: wordCount:2 counter_dist:2 counter_startZ:0 counter_less4:2 repeatedWords:1 (end)
###Reduce method ends
###Reduce method starts
Values: wordCount:2 counter_dist:2 counter_startZ:0 counter_less4:2 (start)
Key: how
Values: wordCount:3 counter_dist:2 counter_startZ:0 counter_less4:2 (end of loop)
Key: how
Values: wordCount:4 counter_dist:2 counter_startZ:0 counter_less4:2 (end of loop)
Values: wordCount:4 counter_dist:3 counter_startZ:0 counter_less4:3 repeatedWords:2 (end)
###Reduce method ends
###Reduce method starts
Values: wordCount:4 counter_dist:3 counter_startZ:0 counter_less4:3 (start)
Key: you
Values: wordCount:5 counter_dist:3 counter_startZ:0 counter_less4:3 (end of loop)
Values: wordCount:5 counter_dist:4 counter_startZ:0 counter_less4:4 repeatedWords:1 (end)
###Reduce method ends
###Reduce method starts
Values: wordCount:5 counter_dist:4 counter_startZ:0 counter_less4:4 (start)
Key: zou
Values: wordCount:6 counter_dist:4 counter_startZ:1 counter_less4:4 (end of loop)
Key: zou
Values: wordCount:7 counter_dist:4 counter_startZ:2 counter_less4:4 (end of loop)
Key: zou
Values: wordCount:8 counter_dist:4 counter_startZ:3 counter_less4:4 (end of loop)
Key: zou
Values: wordCount:9 counter_dist:4 counter_startZ:4 counter_less4:4 (end of loop)
Values: wordCount:9 counter_dist:5 counter_startZ:4 counter_less4:4 repeatedWords:4 (end)
###Reduce method ends
###CLEANUP: wordCount: 9
###CLEANUP: counter_dist: 5
###CLEANUP: counter_startZ: 4
###CLEANUP: counter_less4: 4
从日志来看,所有值似乎都是正确的,并且一切正常。但是,当我打开 HDFS 中的输出目录并读取“part-r-00000”文件时,写入那里的 context.write 的输出完全不同。
Total words: 22
Distinct words: 4
Starts with Z: 0
Appears less than 4 times: 4
最佳答案
您绝不能依赖cleanup()
方法来处理关键的程序逻辑。 cleanup()
方法在每次删除 JVM 时都会被调用。因此,根据生成和终止的 JVM 数量(您无法预测),您的逻辑会变得不稳定。
将初始化
和写入上下文都移到reduce方法中。
即
int wordCount = 0; // Total number of words
int counter_dist = 0; // Number of distinct words in the corpus
int counter_startZ = 0; // Number of words that start with letter Z
int counter_less4 = 0; // Number of words that appear less than 4
和
context.write(new Text("Total words: "), new IntWritable(wordCount));
context.write(new Text("Distinct words: "), new IntWritable(counter_dist));
context.write(new Text("Starts with Z: "), new IntWritable(counter_startZ));
context.write(new Text("Appears less than 4 times:"), new IntWritable(counter_less4));
编辑:根据 OP 评论,似乎整个逻辑都有缺陷。
下面是实现预期结果的代码。 请注意,我还没有实现setup()
或cleanup()
;因为根本不需要。
使用计数器来计算您要查找的内容。 MapReduce 完成后,只需在驱动程序类中获取计数器即可。
例如字数和以“z”或“Z”开头的字可以在映射器中计算
public class WordCountMapper extends Mapper <Object, Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
@Override
public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
String hasKey = itr.nextToken();
word.set(hasKey);
context.getCounter("my_counters", "TOTAL_WORDS").increment(1);
if(hasKey.toUpperCase().startsWith("Z")){
context.getCounter("my_counters", "Z_WORDS").increment(1);
}
context.write(word, one);
}
}
}
reducer 计数器可以统计不同单词的数量 和单词出现次数少于 4 次
。
public class WordCountReducer extends Reducer <Text, IntWritable, Text, IntWritable> {
@Override
public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
int wordCount= 0;
context.getCounter("my_counters", "DISTINCT_WORDS").increment(1);
for (IntWritable val : values){
wordCount += val.get();
}
if(wordCount < 4{
context.getCounter("my_counters", "WORDS_LESS_THAN_4").increment(1);
}
}
}
在 Driver 类中获取计数器。以下代码位于您提交作业的行之后
CounterGroup group = job.getCounters().getGroup("my_counters");
for (Counter counter : group) {
System.out.println(counter.getName() + "=" + counter.getValue());
}
关于java - Hadoop MapReduce : context. 写入更改值,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/49140121/
我正在处理一个处理大量数据的项目,所以我最近发现了 MapReduce,在我进一步深入研究之前,我想确保我的期望是正确的。 与数据的交互将通过 Web 界面进行,因此响应时间在这里至关重要,我认为 1
我正在阅读有关 Hadoop 以及它的容错性的文章。我阅读了 HDFS 并阅读了如何处理主节点和从节点的故障。但是,我找不到任何提及 mapreduce 如何执行容错的文档。特别是,当包含 Job T
我正在尝试在我的 Ubuntu 桌面上使用最新的 Hadoop 版本 2.6.0、Java SDK 1.70 来模拟 Hadoop 环境。我用必要的环境参数配置了 hadoop,它的所有进程都已启动并
就目前情况而言,这个问题不太适合我们的问答形式。我们希望答案得到事实、引用资料或专业知识的支持,但这个问题可能会引发辩论、争论、民意调查或扩展讨论。如果您觉得这个问题可以改进并可能重新开放,visit
我只是想针对我们正在做的一些数据分析工作来评估 HBase。 HBase 将包含我们的事件数据。键为 eventId + 时间。我们想要对日期范围内的几种事件类型 (4-5) 进行分析。事件类型总数约
是否有一种快速算法可以在 MapReduce 框架上运行以从巨大的整数集中查找中位数? 最佳答案 我会这样做。这是顺序快速选择的一种并行版本。 (某些映射/归约工具可能不会让您轻松完成任务...) 从
我正在尝试对大型分布式数据集执行一些数值计算。该算法非常适合 MapReduce 模型,具有以下附加属性:与输入数据相比,映射步骤的输出尺寸较小。数据可以被视为只读,并且静态分布在节点上(故障转移时的
假设我在 RavenDb 中有给定的文档结构 public class Car { public string Manufacturer {get;set;} public int B
我刚刚开始使用 mongo 和 map/reduce,在使用 pymongo 时我遇到了以下错误,而在直接使用 mongo 命令行时我没有得到(我意识到有一个类似的问题这个,但我的似乎更基本)。 我直
*基本上我正在尝试按过去一小时内的得分对对象进行排序。 我正在尝试为我的数据库中的对象生成每小时投票总和。投票嵌入到每个对象中。对象架构如下所示: { _id: ObjectId sc
我们怎样才能使我们的 MapReduce 查询更快? 我们使用五节点 Riak 数据库集群构建了一个应用程序。 我们的数据模型由三个部分组成:比赛、联赛和球队。 比赛包含联赛和球队的链接: 型号 va
关闭。这个问题不符合Stack Overflow guidelines .它目前不接受答案。 我们不允许提问寻求书籍、工具、软件库等的推荐。您可以编辑问题,以便用事实和引用来回答。 关闭 6 年前。
有没有什么方法可以在运行时获取应用程序 ID - 例如 - 带有 yarn 的 wordcount 示例命令? 我希望使用 yarn 从另一个进程启 Action 业命令,并通过 YARN REST
如何在Hadoop Map-reduce程序中使用机器学习算法?我想使用分类算法、决策树、聚类算法。除了 Mahout 之外,请提出一些想法。 最佳答案 您可以编写自己的MapReduce程序,并在m
虽然 MapReduce 可能不是实现图像处理中使用的算法的最佳方式,但出于好奇,如果我作为初学者尝试使用它们,这将是最简单的实现方式。 最佳答案 Hadoop 非常适合处理大量 IO。因此,例如,您
我只是想验证我对这些参数及其关系的理解,如果我错了请通知我。 mapreduce.reduce.shuffle.input.buffer.percent 告诉分配给 reducer 的整个洗牌阶段的内
HBase 需要 mapreduce/yarn,还是只需要 hdfs? 对于 HBase 的基本用法,例如创建表、插入数据、扫描/获取数据,我看不出有任何理由使用 mapreduce/yarn。 请帮
我问了一些关于提高 Hive 查询性能的问题。一些答案与映射器和化简器的数量有关。我尝试了多个映射器和化简器,但在执行过程中没有发现任何差异。不知道为什么,可能是我没有以正确的方式去做,或者我错过了别
我是 mapreduce 和 hadoop 的新手。我阅读了 mapreduce 的示例和设计模式... 好的,我们可以进入正题了。我们正在开发一种软件,可以监控系统并定期捕获它们的 CPU 使用
我正在使用 Microsoft MapReduce SDK 启动仅 Mapper 作业。 调用 hadoop.MapReduceJob.ExecuteJob 立即抛出“响应状态代码不表示成功:404(
我是一名优秀的程序员,十分优秀!