- android - RelativeLayout 背景可绘制重叠内容
- android - 如何链接 cpufeatures lib 以获取 native android 库?
- java - OnItemClickListener 不起作用,但 OnLongItemClickListener 在自定义 ListView 中起作用
- java - Android 文件转字符串
我正在使用 cloudera vm 10.0,spark 版本为 1.6。
登录 pyspark 控制台后,我正在尝试以下语句从配置单元中获取数据
sqlContext.sql("select * from /user/hive/warehouse/default.party").show()
我收到下面给出的错误。
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/usr/lib/spark/python/pyspark/sql/context.py", line 580, in sql
return DataFrame(self._ssql_ctx.sql(sqlQuery), self)
File "/usr/lib/spark/python/lib/py4j-0.9-src.zip/py4j/java_gateway.py", line 813, in __call__
File "/usr/lib/spark/python/pyspark/sql/utils.py", line 45, in deco
return f(*a, **kw)
File "/usr/lib/spark/python/lib/py4j-0.9-src.zip/py4j/protocol.py", line 308, in get_return_value
py4j.protocol.Py4JJavaError: An error occurred while calling o18.sql.
: java.lang.RuntimeException: [1.15] failure: ``('' expected but `/' found
select * from /user/hive/warehouse/default.party
^
at scala.sys.package$.error(package.scala:27)
at org.apache.spark.sql.catalyst.AbstractSparkSQLParser.parse(AbstractSparkSQLParser.scala:36)
at org.apache.spark.sql.catalyst.DefaultParserDialect.parse(ParserDialect.scala:67)
at org.apache.spark.sql.SQLContext$$anonfun$2.apply(SQLContext.scala:211)
at org.apache.spark.sql.SQLContext$$anonfun$2.apply(SQLContext.scala:211)
at org.apache.spark.sql.execution.SparkSQLParser$$anonfun$org$apache$spark$sql$execution$SparkSQLParser$$others$1.apply(SparkSQLParser.scala:114)
at org.apache.spark.sql.execution.SparkSQLParser$$anonfun$org$apache$spark$sql$execution$SparkSQLParser$$others$1.apply(SparkSQLParser.scala:113)
at scala.util.parsing.combinator.Parsers$Success.map(Parsers.scala:136)
at scala.util.parsing.combinator.Parsers$Success.map(Parsers.scala:135)
at scala.util.parsing.combinator.Parsers$Parser$$anonfun$map$1.apply(Parsers.scala:242)
at scala.util.parsing.combinator.Parsers$Parser$$anonfun$map$1.apply(Parsers.scala:242)
at scala.util.parsing.combinator.Parsers$$anon$3.apply(Parsers.scala:222)
at scala.util.parsing.combinator.Parsers$Parser$$anonfun$append$1$$anonfun$apply$2.apply(Parsers.scala:254)
at scala.util.parsing.combinator.Parsers$Parser$$anonfun$append$1$$anonfun$apply$2.apply(Parsers.scala:254)
at scala.util.parsing.combinator.Parsers$Failure.append(Parsers.scala:202)
at scala.util.parsing.combinator.Parsers$Parser$$anonfun$append$1.apply(Parsers.scala:254)
at scala.util.parsing.combinator.Parsers$Parser$$anonfun$append$1.apply(Parsers.scala:254)
at scala.util.parsing.combinator.Parsers$$anon$3.apply(Parsers.scala:222)
at scala.util.parsing.combinator.Parsers$$anon$2$$anonfun$apply$14.apply(Parsers.scala:891)
at scala.util.parsing.combinator.Parsers$$anon$2$$anonfun$apply$14.apply(Parsers.scala:891)
at scala.util.DynamicVariable.withValue(DynamicVariable.scala:57)
at scala.util.parsing.combinator.Parsers$$anon$2.apply(Parsers.scala:890)
at scala.util.parsing.combinator.PackratParsers$$anon$1.apply(PackratParsers.scala:110)
at org.apache.spark.sql.catalyst.AbstractSparkSQLParser.parse(AbstractSparkSQLParser.scala:34)
at org.apache.spark.sql.SQLContext$$anonfun$1.apply(SQLContext.scala:208)
at org.apache.spark.sql.SQLContext$$anonfun$1.apply(SQLContext.scala:208)
at org.apache.spark.sql.execution.datasources.DDLParser.parse(DDLParser.scala:43)
at org.apache.spark.sql.SQLContext.parseSql(SQLContext.scala:231)
at org.apache.spark.sql.SQLContext.sql(SQLContext.scala:817)
at sun.reflect.GeneratedMethodAccessor3.invoke(Unknown Source)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:606)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:231)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:381)
at py4j.Gateway.invoke(Gateway.java:259)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:133)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:209)
at java.lang.Thread.run(Thread.java:745)
请帮我解决这个障碍
最佳答案
为了查询 Hive 表,您需要先将其注册为临时表。
from pyspark.sql import HiveContext
sqlContext = HiveContext(sc)
party = sqlContext.table("default.party")
party.registerTempTable("party_temp_in_spark")
sqlContext.sql("select * from party_temp_in_spark").show()
希望对您有所帮助!
关于python - Pyspark sparkSql 问题,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/44879585/
我在数据框中有一列月份数字,想将其更改为月份名称,所以我使用了这个: df['monthName'] = df['monthNumber'].apply(lambda x: calendar.mont
Pyspark 中是否有一个 input() 函数,我可以通过它获取控制台输入。如果是,请详细说明一下。 如何在 PySpark 中编写以下代码: directory_change = input("
我们正在 pyspark 中构建数据摄取框架,并想知道处理数据类型异常的最佳方法是什么。基本上,我们希望有一个拒绝表来捕获所有未与架构确认的数据。 stringDf = sparkSession.cr
我正在开发基于一组 ORC 文件的 spark 数据框的 sql 查询。程序是这样的: from pyspark.sql import SparkSession spark_session = Spa
我有一个 Pyspark 数据框( 原始数据框 )具有以下数据(所有列都有 字符串 数据类型): id Value 1 103 2
我有一台配置了Redis和Maven的服务器 然后我执行以下sparkSession spark = pyspark .sql .SparkSession .builder .master('loca
从一些简短的测试来看,pyspark 数据帧的列删除功能似乎不区分大小写,例如。 from pyspark.sql import SparkSession from pyspark.sql.funct
我有: +---+-------+-------+ | id| var1| var2| +---+-------+-------+ | a|[1,2,3]|[1,2,3]| | b|[2,
从一些简短的测试来看,pyspark 数据帧的列删除功能似乎不区分大小写,例如。 from pyspark.sql import SparkSession from pyspark.sql.funct
我有一个带有多个数字列的 pyspark DF,我想为每一列根据每个变量计算该行的十分位数或其他分位数等级。 这对 Pandas 来说很简单,因为我们可以使用 qcut 函数为每个变量创建一个新列,如
我有以下使用 pyspark.ml 包进行线性回归的代码。但是,当模型适合时,我在最后一行收到此错误消息: IllegalArgumentException: u'requirement failed
我有一个由 | 分隔的平面文件(管道),没有引号字符。示例数据如下所示: SOME_NUMBER|SOME_MULTILINE_STRING|SOME_STRING 23|multiline text
给定如下模式: root |-- first_name: string |-- last_name: string |-- degrees: array | |-- element: struc
我有一个 pyspark 数据框如下(这只是一个简化的例子,我的实际数据框有数百列): col1,col2,......,col_with_fix_header 1,2,.......,3 4,5,.
我有一个数据框 +------+--------------------+-----------------+---- | id| titulo |tipo | formac
我从 Spark 数组“df_spark”开始: from pyspark.sql import SparkSession import pandas as pd import numpy as np
如何根据行号/行索引值删除 Pyspark 中的行值? 我是 Pyspark(和编码)的新手——我尝试编码一些东西,但它不起作用。 最佳答案 您不能删除特定的列,但您可以使用 filter 或其别名
我有一个循环生成多个因子表的输出并将列名存储在列表中: | id | f_1a | f_2a | |:---|:----:|:-----| |1 |1.2 |0.95 | |2 |0.7
我正在尝试将 hql 脚本转换为 pyspark。我正在努力如何在 groupby 子句之后的聚合中实现 case when 语句的总和。例如。 dataframe1 = dataframe0.gro
我想添加新的 2 列值服务 arr 第一个和第二个值 但我收到错误: Field name should be String Literal, but it's 0; production_targe
我是一名优秀的程序员,十分优秀!