- android - RelativeLayout 背景可绘制重叠内容
- android - 如何链接 cpufeatures lib 以获取 native android 库?
- java - OnItemClickListener 不起作用,但 OnLongItemClickListener 在自定义 ListView 中起作用
- java - Android 文件转字符串
这是我的函数应用规则,col mdp_codcat,mdp_idregl, usedRef changechanges according to the data in array bRef.
def withMdpCodcat(bRef: Broadcast[Array[RefRglSDC]])(dataFrame: DataFrame):DataFrame ={var matchRule = false
var i = 0
while (i < bRef.value.size && !matchRule) {
if ((bRef.value(i).sensop.isEmpty || bRef.value(i).sensop.equals(col("signe")))
&& (bRef.value(i).cdopcz.isEmpty || Lib.matchCdopcz(strTail(col("cdopcz")).toString(), bRef.value(i).cdopcz))
&& (bRef.value(i).libope.isEmpty || Lib.matchRule(col("lib_ope").toString(), bRef.value(i).libope))
&& (bRef.value(i).qualib.isEmpty || Lib.matchRule(col("qualif_lib_ope").toString(), bRef.value(i).qualib))) {
matchRule = true
dataFrame.withColumn("mdp_codcat", lit(bRef.value(i).codcat))
dataFrame.withColumn("mdp_idregl", lit(bRef.value(i).idregl))
dataFrame.withColumn("usedRef", lit("SDC"))
}else{
dataFrame.withColumn("mdp_codcat", lit("NOT_CATEGORIZED"))
dataFrame.withColumn("mdp_idregl", lit("-1"))
dataFrame.withColumn("usedRef", lit(""))
}
i += 1
}
dataFrame
}
dataFrame : "cdenjp", "cdguic", "numcpt", "mdp_codcat", "mdp_idregl" , mdp_codcat","mdp_idregl","usedRef" if match add mdp_idregl, mdp_idregl,mdp_idregl with value bRef
示例 - 我的数据框:
val DF = Seq(("tt", "aa","bb"),("tt1", "aa1","bb2"),("tt1", "aa1","bb2")).toDF("t","a","b)
+---+---+---+---+
| t| a| b| c|
+---+---+---+---+
| tt| aa| bb| cc|
|tt1|aa1|bb2|cc3|
+---+---+---+---+
文件.文本内容:
,aa,bb,cc
,aa1,bb2,cc3
tt4,aa4,bb4,cc4
tt1,aa1,,cc6
case class TOTO(a: String, b:String, c: String, d:String)
val text = sc.textFile("file:///home/X176616/file")
val bRef= textFromCsv.map(row => row.split(",", -1))
.map(c => TOTO(c(0), c(1), c(2), c(3))).collect().sortBy(_.a)
def withMdpCodcat(bRef: Broadcast[Array[RefRglSDC]])(dataFrame: DataFrame):DataFrame
dataframe.withColumn("mdp_codcat_new", "NOT_FOUND") //first init not found, change if while if match
var matchRule = false
var i = 0
while (i < bRef.value.size && !matchRule) {
if ((bRef.value(i).a.isEmpty || bRef.value(i).a.equals(signe))
&& (bRef.value(i).b.isEmpty || Lib.matchCdopcz(col(b), bRef.value(i).b))
&& (bRef.value(i).c.isEmpty || Lib.matchRule(col(c), bRef.value(i).c))
)) {
matchRule = true
dataframe.withColumn("mdp_codcat_new", bRef.value(i).d)
dataframe.withColumn("mdp_mdp_idregl_new" = bRef.value(i).e
}
i += 1
}
最后 df 如果条件为真
bRef.value(i).a.isEmpty || bRef.value(i).a.equals(signe))
&& (bRef.value(i).b.isEmpty || Lib.matchCdopcz(b.substring(1).toInt.toString, bRef.value(i).b))
&& (bRef.value(i).c.isEmpty || Lib.matchRule(c, bRef.value(i).c)
+---+---+---+---+-----------+----------+
| t| a| b| c|mdp_codcat |mdp_idregl|
+---+---+---+---+-----------|----------+
| tt| aa| bb| cc|cc | other |
| ab|aa1|bb2|cc3|cc4 | toto | from bRef if true in while
| cd|aa1|bb2|cc3|cc4 | titi |
| b|a1 |b2 |c3 |NO_FOUND |NO_FOUND | (not_found if conditional false)
+---+---+---+---+----------------------+
+---+---+---+---+----------------------+
最佳答案
您不能根据运行时值创建数据框模式。我会尝试做得更简单。首先,我创建了具有默认值的三列:
dataFrame.withColumn("mdp_codcat", lit(""))
dataFrame.withColumn("mdp_idregl", lit(""))
dataFrame.withColumn("usedRef", lit(""))
然后您可以将 udf 与您的广播值一起使用:
def mdp_codcat(bRef: Broadcast[Array[RefRglSDC]]) = udf { (field: String) =>
{
// Your while and if stuff
// return your update data
}}
并将每个 udf 应用于每个字段:
dataframe.withColumn("mdp_codcat_new", mdp_codcat(bRef)("mdp_codcat"))
也许它可以帮助
关于scala - 如何使用 withColumn Spark Dataframe scala with while,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/52831391/
目前正在学习 Spark 的类(class)并了解到执行者的定义: Each executor will hold a chunk of the data to be processed. Thisc
阅读了有关 http://spark.apache.org/docs/0.8.0/cluster-overview.html 的一些文档后,我有一些问题想要澄清。 以 Spark 为例: JavaSp
Spark核心中的调度器与以下Spark Stack(来自Learning Spark:Lightning-Fast Big Data Analysis一书)中的Standalone Schedule
我想在 spark-submit 或 start 处设置 spark.eventLog.enabled 和 spark.eventLog.dir -all level -- 不要求在 scala/ja
我有来自 SQL Server 的数据,需要在 Apache Spark (Databricks) 中进行操作。 在 SQL Server 中,此表的三个键列使用区分大小写的 COLLATION 选项
所有这些有什么区别和用途? spark.local.ip spark.driver.host spark.driver.bind地址 spark.driver.hostname 如何将机器修复为 Sp
我有大约 10 个 Spark 作业,每个作业都会进行一些转换并将数据加载到数据库中。必须为每个作业单独打开和关闭 Spark session ,每次初始化都会耗费时间。 是否可以只创建一次 Spar
/Downloads/spark-3.0.1-bin-hadoop2.7/bin$ ./spark-shell 20/09/23 10:58:45 WARN Utils: Your hostname,
我是 Spark 的完全新手,并且刚刚开始对此进行更多探索。我选择了更长的路径,不使用任何 CDH 发行版安装 hadoop,并且我从 Apache 网站安装了 Hadoop 并自己设置配置文件以了解
TL; 博士 Spark UI 显示的内核和内存数量与我在使用 spark-submit 时要求的数量不同 更多细节: 我在独立模式下运行 Spark 1.6。 当我运行 spark-submit 时
spark-submit 上的文档说明如下: The spark-submit script in Spark’s bin directory is used to launch applicatio
关闭。这个问题是opinion-based .它目前不接受答案。 想改善这个问题吗?更新问题,以便可以通过 editing this post 用事实和引文回答问题. 6 个月前关闭。 Improve
我想了解接收器如何在 Spark Streaming 中工作。根据我的理解,将有一个接收器任务在执行器中运行,用于收集数据并保存为 RDD。当调用 start() 时,接收器开始读取。需要澄清以下内容
有没有办法在不同线程中使用相同的 spark 上下文并行运行多个 spark 作业? 我尝试使用 Vertx 3,但看起来每个作业都在排队并按顺序启动。 如何让它在相同的 spark 上下文中同时运行
我们有一个 Spark 流应用程序,这是一项长期运行的任务。事件日志指向 hdfs 位置 hdfs://spark-history,当我们开始流式传输应用程序时正在其中创建 application_X
我们正在尝试找到一种加载 Spark (2.x) ML 训练模型的方法,以便根据请求(通过 REST 接口(interface))我们可以查询它并获得预测,例如http://predictor.com
Spark newb 问题:我在 spark-sql 中进行完全相同的 Spark SQL 查询并在 spark-shell . spark-shell版本大约需要 10 秒,而 spark-sql版
我正在使用 Spark 流。根据 Spark 编程指南(参见 http://spark.apache.org/docs/latest/programming-guide.html#accumulato
我正在使用 CDH 5.2。我可以使用 spark-shell 运行命令。 如何运行包含spark命令的文件(file.spark)。 有没有办法在不使用 sbt 的情况下在 CDH 5.2 中运行/
我使用 Elasticsearch 已经有一段时间了,但使用 Cassandra 的经验很少。 现在,我有一个项目想要使用 Spark 来处理数据,但我需要决定是否应该使用 Cassandra 还是
我是一名优秀的程序员,十分优秀!