- android - RelativeLayout 背景可绘制重叠内容
- android - 如何链接 cpufeatures lib 以获取 native android 库?
- java - OnItemClickListener 不起作用,但 OnLongItemClickListener 在自定义 ListView 中起作用
- java - Android 文件转字符串
这个程序应该完成 MapReduce 工作。第一个作业的输出必须作为第二个作业的输入。
当我运行它时,出现两个错误:
这是我的代码:
import java.io.IOException;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.io.LongWritable;
public class MaxPubYear {
public static class FrequencyMapper extends Mapper<LongWritable, Text, Text, IntWritable> {
public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
Text word = new Text();
String delim = ";";
Integer year = 0;
String tokens[] = value.toString().split(delim);
if (tokens.length >= 4) {
year = TryParseInt(tokens[3].replace("\"", "").trim());
if (year > 0) {
word = new Text(year.toString());
context.write(word, new IntWritable(1));
}
}
}
}
public static class FrequencyReducer extends
Reducer<Text, IntWritable, Text, IntWritable> {
public void reduce(Text key, Iterable<IntWritable> values,
Context context) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable value : values) {
sum += value.get();
}
context.write(key, new IntWritable(sum));
}
}
public static class MaxPubYearMapper extends
Mapper<LongWritable, Text, IntWritable, Text> {
public void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {
String delim = "\t";
Text valtosend = new Text();
String tokens[] = value.toString().split(delim);
if (tokens.length == 2) {
valtosend.set(tokens[0] + ";" + tokens[1]);
context.write(new IntWritable(1), valtosend);
}
}
}
public static class MaxPubYearReducer extends
Reducer<IntWritable, Text, Text, IntWritable> {
public void reduce(IntWritable key, Iterable<Text> values,
Context context) throws IOException, InterruptedException {
int maxiValue = Integer.MIN_VALUE;
String maxiYear = "";
for (Text value : values) {
String token[] = value.toString().split(";");
if (token.length == 2
&& TryParseInt(token[1]).intValue() > maxiValue) {
maxiValue = TryParseInt(token[1]);
maxiYear = token[0];
}
}
context.write(new Text(maxiYear), new IntWritable(maxiValue));
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = new Job(conf, "Frequency");
job.setJarByClass(MaxPubYear.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
job.setMapperClass(FrequencyMapper.class);
job.setCombinerClass(FrequencyReducer.class);
job.setReducerClass(FrequencyReducer.class);
job.setOutputFormatClass(TextOutputFormat.class);
job.setInputFormatClass(TextInputFormat.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1] + "_temp"));
int exitCode = job.waitForCompletion(true) ? 0 : 1;
if (exitCode == 0) {
Job SecondJob = new Job(conf, "Maximum Publication year");
SecondJob.setJarByClass(MaxPubYear.class);
SecondJob.setOutputKeyClass(Text.class);
SecondJob.setOutputValueClass(IntWritable.class);
SecondJob.setMapOutputKeyClass(IntWritable.class);
SecondJob.setMapOutputValueClass(Text.class);
SecondJob.setMapperClass(MaxPubYearMapper.class);
SecondJob.setReducerClass(MaxPubYearReducer.class);
FileInputFormat.addInputPath(SecondJob, new Path(args[1] + "_temp"));
FileOutputFormat.setOutputPath(SecondJob, new Path(args[1]));
System.exit(SecondJob.waitForCompletion(true) ? 0 : 1);
}
}
public static Integer TryParseInt(String trim) {
// TODO Auto-generated method stub
return(0);
}
}
最佳答案
Exception in thread "main" org.apache.hadoop.mapred.FileAlreadyExistsException
Map-reduce 作业不会覆盖现有目录中的内容。 MR 作业的输出路径必须是不存在的目录路径。 MR 作业将在指定路径创建一个目录,其中包含文件。
在您的代码中:
FileOutputFormat.setOutputPath(job, new Path(args[1] + "_temp"));
运行 MR 作业时请确保此路径不存在。
关于java - 运行 MapReduce 代码时出现 FileAlreadyExistsException,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/25913840/
我正在处理一个处理大量数据的项目,所以我最近发现了 MapReduce,在我进一步深入研究之前,我想确保我的期望是正确的。 与数据的交互将通过 Web 界面进行,因此响应时间在这里至关重要,我认为 1
我正在阅读有关 Hadoop 以及它的容错性的文章。我阅读了 HDFS 并阅读了如何处理主节点和从节点的故障。但是,我找不到任何提及 mapreduce 如何执行容错的文档。特别是,当包含 Job T
我正在尝试在我的 Ubuntu 桌面上使用最新的 Hadoop 版本 2.6.0、Java SDK 1.70 来模拟 Hadoop 环境。我用必要的环境参数配置了 hadoop,它的所有进程都已启动并
就目前情况而言,这个问题不太适合我们的问答形式。我们希望答案得到事实、引用资料或专业知识的支持,但这个问题可能会引发辩论、争论、民意调查或扩展讨论。如果您觉得这个问题可以改进并可能重新开放,visit
我只是想针对我们正在做的一些数据分析工作来评估 HBase。 HBase 将包含我们的事件数据。键为 eventId + 时间。我们想要对日期范围内的几种事件类型 (4-5) 进行分析。事件类型总数约
是否有一种快速算法可以在 MapReduce 框架上运行以从巨大的整数集中查找中位数? 最佳答案 我会这样做。这是顺序快速选择的一种并行版本。 (某些映射/归约工具可能不会让您轻松完成任务...) 从
我正在尝试对大型分布式数据集执行一些数值计算。该算法非常适合 MapReduce 模型,具有以下附加属性:与输入数据相比,映射步骤的输出尺寸较小。数据可以被视为只读,并且静态分布在节点上(故障转移时的
假设我在 RavenDb 中有给定的文档结构 public class Car { public string Manufacturer {get;set;} public int B
我刚刚开始使用 mongo 和 map/reduce,在使用 pymongo 时我遇到了以下错误,而在直接使用 mongo 命令行时我没有得到(我意识到有一个类似的问题这个,但我的似乎更基本)。 我直
*基本上我正在尝试按过去一小时内的得分对对象进行排序。 我正在尝试为我的数据库中的对象生成每小时投票总和。投票嵌入到每个对象中。对象架构如下所示: { _id: ObjectId sc
我们怎样才能使我们的 MapReduce 查询更快? 我们使用五节点 Riak 数据库集群构建了一个应用程序。 我们的数据模型由三个部分组成:比赛、联赛和球队。 比赛包含联赛和球队的链接: 型号 va
关闭。这个问题不符合Stack Overflow guidelines .它目前不接受答案。 我们不允许提问寻求书籍、工具、软件库等的推荐。您可以编辑问题,以便用事实和引用来回答。 关闭 6 年前。
有没有什么方法可以在运行时获取应用程序 ID - 例如 - 带有 yarn 的 wordcount 示例命令? 我希望使用 yarn 从另一个进程启 Action 业命令,并通过 YARN REST
如何在Hadoop Map-reduce程序中使用机器学习算法?我想使用分类算法、决策树、聚类算法。除了 Mahout 之外,请提出一些想法。 最佳答案 您可以编写自己的MapReduce程序,并在m
虽然 MapReduce 可能不是实现图像处理中使用的算法的最佳方式,但出于好奇,如果我作为初学者尝试使用它们,这将是最简单的实现方式。 最佳答案 Hadoop 非常适合处理大量 IO。因此,例如,您
我只是想验证我对这些参数及其关系的理解,如果我错了请通知我。 mapreduce.reduce.shuffle.input.buffer.percent 告诉分配给 reducer 的整个洗牌阶段的内
HBase 需要 mapreduce/yarn,还是只需要 hdfs? 对于 HBase 的基本用法,例如创建表、插入数据、扫描/获取数据,我看不出有任何理由使用 mapreduce/yarn。 请帮
我问了一些关于提高 Hive 查询性能的问题。一些答案与映射器和化简器的数量有关。我尝试了多个映射器和化简器,但在执行过程中没有发现任何差异。不知道为什么,可能是我没有以正确的方式去做,或者我错过了别
我是 mapreduce 和 hadoop 的新手。我阅读了 mapreduce 的示例和设计模式... 好的,我们可以进入正题了。我们正在开发一种软件,可以监控系统并定期捕获它们的 CPU 使用
我正在使用 Microsoft MapReduce SDK 启动仅 Mapper 作业。 调用 hadoop.MapReduceJob.ExecuteJob 立即抛出“响应状态代码不表示成功:404(
我是一名优秀的程序员,十分优秀!