- android - RelativeLayout 背景可绘制重叠内容
- android - 如何链接 cpufeatures lib 以获取 native android 库?
- java - OnItemClickListener 不起作用,但 OnLongItemClickListener 在自定义 ListView 中起作用
- java - Android 文件转字符串
算法 :
我正在用 CUDA 编写程序,问题如下:
__global__ void EuclideanDistances( float *A, float *B , float *C , int n , int m)
{
// SIZE is equal to 128
__shared__ float accumResult[SIZE];
float sA;
float sB;
// MAPPING
int bx = blockIdx.x; // n
int by = blockIdx.y; // m
int ty = threadIdx.y; // 128
int tx = threadIdx.x; // 1
sA = A [bx * SIZE + ty];
sB = B [by * SIZE + ty];
__syncthreads();
accumResult[ty] = (sA - sB) * (sA - sB);
__syncthreads();
// Parallel tree-reduction
for (int stride = SIZE/2 ; stride > 0 ; stride >>= 1)
if (ty < stride)
{
accumResult[ty] += accumResult [stride + ty];
__syncthreads();
}
// Writing results to output matrix
if ((threadIdx.y == 0))
C [bx * m + by] = accumResult[ty];
__syncthreads();
}
n
的网格来自
m
块和块
128
线程,我正在增加块内的线程数以减少块数。
128
块来自
8
线程(总共 1024 个线程,这是最大大小)
n/8
的网格来自
m/8
块
__global__ void EuclideanDistances( float *A, float *B , float *C, int n , int m)
{
__shared__ float accumResult[SIZE][8];
__shared__ float sA[SIZE][8];
__shared__ float sB[SIZE][8];
int bx = blockIdx.x; // n / 8
int by = blockIdx.y; // m / 8
int tx = threadIdx.x; // 8
int ty = threadIdx.y; // 128
int i = bx * tx * SIZE + ty;
int j = by * tx * SIZE + ty;
sA[ty][tx] = A [i];
sB[ty][tx] = B[j];
__syncthreads();
accumResult[ty][tx] = (sA[ty][tx] - sB[ty][tx]) * (sA[ty][tx] - sB[ty][tx]);
__syncthreads();
// Reduction
for (int stride = SIZE/2 ; stride > 0 ; stride>>=1)
if (ty < stride)
{
accumResult[ty][tx] += accumResult [stride + ty][tx];
__syncthreads();
}
C[bx * m + by] = accumResult[0][tx];
}
int main()
{
int m = 20000; //MatrixA size : m * SIZE
int n = 4000; //MatrixB size : n * SIZE
srand((unsigned)time(0));
// Host Allocations
float *matrixA = (float *) malloc (n * SIZE * sizeof(float));
for(int i=0; i < n * SIZE; i++)
matrixA[i] = (float) (rand()%100)+1;
float *matrixB = (float *) malloc (m * SIZE * sizeof(float));
for(int i=0; i < m * SIZE; i++)
matrixB[i] = (float) (rand()%100)+1;
float *results_kernel1 = (float *) malloc (n * m * sizeof(float));
float *results_kernel2 = (float *) malloc (n * m * sizeof(float));
//Device Allocation
float *d_matrixA;
float *d_matrixB;
cudaMalloc((void **)&d_matrixA, n * SIZE * sizeof(float));
cudaMalloc((void **)&d_matrixB, m * SIZE * sizeof(float));
cudaMemcpy(d_matrixA , matrixA , n * SIZE * sizeof(float) , cudaMemcpyHostToDevice);
cudaMemcpy(d_matrixB , matrixB , m * SIZE * sizeof(float) , cudaMemcpyHostToDevice);
float *d_results_kernel1;
float *d_results_kernel2;
cudaMalloc((void **)&d_results_kernel1 , n * m * sizeof(float));
cudaMalloc((void **)&d_results_kernel2 , n * m * sizeof(float));
dim3 threads1 (1 , 128);
dim3 blocks1 (n , m);
EuclideanDistances1 <<<blocks1 , threads1>>> (d_matrixA , d_matrixB , d_results_kernel1 , n , m);
cudaDeviceSynchronize();
cudaMemcpy(results_kernel1 , d_results_kernel1 , n * m *sizeof(float) , cudaMemcpyDeviceToHost);
cudaFree(d_results_kernel1);
dim3 threads2 (8 , 128); // 1024 threads per block (maximum)
dim3 blocks2 (ceil((float)n/8) , ceil((float)m/8));
EuclideanDistances2 <<<blocks2 , threads2>>> (d_matrixA , d_matrixB , d_results_kernel2 , n , m);
cudaDeviceSynchronize();
cudaMemcpy(results_kernel2 , d_results_kernel2 , n * m *sizeof(float) , cudaMemcpyDeviceToHost);
cudaFree(d_results_kernel2);
// Visualising and comparing results
for (int i = 0 ; i < 50 ; i++)
std::cout << "kernel1 : " << results_kernel1[i] << " | kernel2 : " << results_kernel2[i] << std::endl;
free(matrixA);
free(matrixB);
free(results_kernel1);
free(results_kernel2);
return 0;
}
最佳答案
您的问题似乎有两个组成部分:
Why isn't my second kernel working?
i
, j
以及用于存储 C
的索引值(value)。 _syncthreads()
在条件块内 How do I make my code run faster?
CHKSIZE
) B vector 。您可以将 CHKSIZE 设置为 1 以查看之前的结果(~0.2 秒)。我发现 4 的 CHKSIZE 有很好的改进。这是一种试图利用 A 的数据重用的攻击。通过 CHKSIZE 为 4 的额外优化,内核 4 的内核时间下降到大约 0.1 秒。
$ cat t460.cu
#include <stdio.h>
#include <stdlib.h>
#include <iostream>
// both M and N must be evenly divisible by SIZE, M must be evenly divisible by CHKSIZE
#define SIZE 128
#define N 4000
#define M 20000
#define CHKSIZE 4
__global__ void EuclideanDistances1( float *A, float *B , float *C , int n , int m)
{
// SIZE is equal to 128
__shared__ float accumResult[SIZE];
float sA;
float sB;
// MAPPING
int bx = blockIdx.x; // n
int by = blockIdx.y; // m
int ty = threadIdx.y; // 128
//int tx = threadIdx.x; // 1
sA = A [bx * SIZE + ty];
sB = B [by * SIZE + ty];
__syncthreads();
accumResult[ty] = (sA - sB) * (sA - sB);
__syncthreads();
// Parallel tree-reduction
for (int stride = SIZE/2 ; stride > 0 ; stride >>= 1){
if (ty < stride)
{
accumResult[ty] += accumResult [stride + ty];
}
__syncthreads();
}
// Writing results to output matrix
if ((ty == 0))
C [bx * m + by] = accumResult[ty];
__syncthreads();
}
__global__ void EuclideanDistances2( float *A, float *B , float *C, int n , int m)
{
__shared__ float accumResult[SIZE][8];
__shared__ float sA[SIZE][8];
__shared__ float sB[SIZE][8];
int bx = blockIdx.x; // n / 8
int by = blockIdx.y; // m
int tx = threadIdx.x; // 8
int ty = threadIdx.y; // 128
int i = ((bx*8) + tx) * SIZE + ty;
int j = by * SIZE + ty;
sA[ty][tx] = A[i];
sB[ty][tx] = B[j];
__syncthreads();
accumResult[ty][tx] = (sA[ty][tx] - sB[ty][tx]) * (sA[ty][tx] - sB[ty][tx]);
__syncthreads();
// Reduction
for (int stride = SIZE/2 ; stride > 0 ; stride>>=1){
if (ty < stride)
{
accumResult[ty][tx] += accumResult [stride + ty][tx];
}
__syncthreads();
}
if (ty == 0)
C[((bx*8)+tx) * m + by] = accumResult[0][tx];
}
//naive kernel
__global__ void EuclideanDistances3( float *A, float *B , float *C, int n , int m){
int idx = threadIdx.x+blockDim.x*blockIdx.x;
int idy = threadIdx.y+blockDim.y*blockIdx.y;
float result = 0.0f;
if ((idx < n) && (idy < m)){
for (int i = 0; i < SIZE; i++){
float temp = A[(idx*SIZE)+i] - B[(idy*SIZE)+i];
result += temp * temp;}
C[(idx*m) + idy] = result;
}
}
//optimized kernel
__global__ void EuclideanDistances4( const float *A, const float *B , float *C, const int n , const int m){
// n, A, 4000 this kernel assumes A is column-major A(SIZE, n)
// m, B, 20000 this kernel assumes B is row-major B(m, SIZE)
// this kernel assumes C is column-major C(m,n)
// this kernel assumes number of threads per threadblock == SIZE
// CHKSIZE is the number of B vectors that will be compute per block
__shared__ float my_sB[CHKSIZE*SIZE]; // enough shared storage for CHKSIZE vectors of B
int bx = blockIdx.x; // one block per CHKSIZE rows of B (the larger input matrix)
while ((bx*CHKSIZE) < m){ // not used, this while loop could be used to extend a block to multiple chunks
int tx = threadIdx.x;
for (int i = 0; i < CHKSIZE; i++) // load vectors of B into shared memory
my_sB[(i*SIZE)+tx] = B[(((bx*CHKSIZE)+i)*SIZE)+tx];
__syncthreads();
while (tx < n){ //loop across all vectors in A
float result[CHKSIZE];
for (int i = 0; i < CHKSIZE; i++)
result[i] = 0.0f;
for (int i = 0; i < SIZE; i++){
float Atemp = A[(n*i)+tx];
for (int j = 0; j < CHKSIZE; j++){ // compute all CHKSIZE B vectors with read of A
float temp = Atemp - my_sB[i + (j*SIZE)];
result[j] += temp * temp;}}
for (int i = 0; i < CHKSIZE; i++) // store CHKSIZE results
C[((i+(bx*CHKSIZE))*n)+ tx] = result[i];
tx += blockDim.x; } // continue looping across vectors in A
__syncthreads(); // necessary to prevent warps from racing ahead, if block looping is used
bx += gridDim.x;}
}
float comp_euclid_sq(const float *rA, const float *rB, const int size){
float result = 0.0f;
float temp;
for (int i = 0; i < size; i++){
temp = (rA[i] - rB[i]);
result += temp * temp;}
return result;
}
int main()
{
float et1=0.0f, et2=0.0f, et3=0.0f, et4=0.0f;
cudaEvent_t start1, start2, start3,start4, stop1, stop2, stop3, stop4;
cudaEventCreate(&start1);
cudaEventCreate(&start2);
cudaEventCreate(&start3);
cudaEventCreate(&start4);
cudaEventCreate(&stop1);
cudaEventCreate(&stop2);
cudaEventCreate(&stop3);
cudaEventCreate(&stop4);
int n = N; //MatrixA size : n * SIZE
int m = M; //MatrixB size : m * SIZE
srand((unsigned)time(0));
// Host Allocations
float *matrixA = (float *) malloc (n * SIZE * sizeof(float));
for(int i=0; i < n * SIZE; i++)
matrixA[i] = (float) (rand()%100)+1;
float *matrixB = (float *) malloc (m * SIZE * sizeof(float));
for(int i=0; i < m * SIZE; i++)
matrixB[i] = (float) (rand()%100)+1;
float *results_kernel = (float *) malloc (n * m * sizeof(float));
float *cpu_results_kernel = (float *) malloc (n * m * sizeof(float));
for (int i = 0; i< n*m; i++)
cpu_results_kernel[i] = comp_euclid_sq(matrixA + ((i/m)*SIZE), matrixB + (i%m)*SIZE, SIZE);
//Device Allocation
float *d_matrixA;
float *d_matrixB;
cudaMalloc((void **)&d_matrixA, n * SIZE * sizeof(float));
cudaMalloc((void **)&d_matrixB, m * SIZE * sizeof(float));
cudaMemcpy(d_matrixA , matrixA , n * SIZE * sizeof(float) , cudaMemcpyHostToDevice);
cudaMemcpy(d_matrixB , matrixB , m * SIZE * sizeof(float) , cudaMemcpyHostToDevice);
float *d_results_kernel;
cudaMalloc((void **)&d_results_kernel , n * m * sizeof(float));
dim3 threads1 (1 , SIZE);
dim3 blocks1 (n , m);
cudaEventRecord(start1);
EuclideanDistances1 <<<blocks1 , threads1>>> (d_matrixA , d_matrixB , d_results_kernel , n , m);
cudaEventRecord(stop1);
cudaMemcpy(results_kernel , d_results_kernel , n * m *sizeof(float) , cudaMemcpyDeviceToHost);
for (int i = 0; i< n*m; i++) {
if (results_kernel[i] != cpu_results_kernel[i]) {printf("cpu/kernel1 mismatch at %d, cpu: %f, kernel1: %f\n", i, cpu_results_kernel[i], results_kernel[i]); return 1;}}
cudaMemset(d_results_kernel, 0, n*m*sizeof(float));
cudaEventSynchronize(stop1);
cudaEventElapsedTime(&et1, start1, stop1);
dim3 threads2 (8 , SIZE); // 1024 threads per block (maximum)
dim3 blocks2 (n/8 , m); // assumes n evenly divisible by 8
cudaEventRecord(start2);
EuclideanDistances2 <<<blocks2 , threads2>>> (d_matrixA , d_matrixB , d_results_kernel , n , m);
cudaEventRecord(stop2);
cudaMemcpy(results_kernel , d_results_kernel , n * m *sizeof(float) , cudaMemcpyDeviceToHost);
for (int i = 0; i< n*m; i++) {
if (results_kernel[i] != cpu_results_kernel[i]) {printf("cpu/kernel2 mismatch at %d, cpu: %f, kernel1: %f\n", i, cpu_results_kernel[i], results_kernel[i]); return 1;}}
cudaMemset(d_results_kernel, 0, n*m*sizeof(float));
cudaEventSynchronize(stop2);
cudaEventElapsedTime(&et2, start2, stop2);
cudaFuncSetCacheConfig(EuclideanDistances3, cudaFuncCachePreferL1);
dim3 threads3 (8, 32); // 1024 threads per block (maximum)
dim3 blocks3 (n/threads3.x , m/threads3.y); // assumes evenly divisible
cudaEventRecord(start3);
EuclideanDistances3 <<<blocks3 , threads3>>> (d_matrixA , d_matrixB , d_results_kernel , n , m);
cudaEventRecord(stop3);
cudaMemcpy(results_kernel , d_results_kernel , n * m *sizeof(float) , cudaMemcpyDeviceToHost);
for (int i = 0; i< n*m; i++) {
if (results_kernel[i] != cpu_results_kernel[i]) {printf("cpu/kernel3 mismatch at %d, cpu: %f, kernel3: %f\n", i, cpu_results_kernel[i], results_kernel[i]); return 1;}}
cudaMemset(d_results_kernel, 0, n*m*sizeof(float));
cudaEventSynchronize(stop3);
cudaEventElapsedTime(&et3, start3, stop3);
// transpose matrix A
float *matrixA_T = (float *) malloc (n * SIZE * sizeof(float));
for (int i = 0; i < n; i++)
for (int j = 0; j < SIZE; j++)
matrixA_T[(j*n)+i] = matrixA[(i*SIZE)+j];
cudaMemcpy(d_matrixA , matrixA_T , n * SIZE * sizeof(float) , cudaMemcpyHostToDevice);
cudaFuncSetCacheConfig(EuclideanDistances4, cudaFuncCachePreferL1);
dim3 threads4(SIZE); // one thread per vector element
dim3 blocks4(m/CHKSIZE);
cudaEventRecord(start4);
EuclideanDistances4 <<<blocks4 , threads4>>> (d_matrixA , d_matrixB , d_results_kernel , n , m);
cudaEventRecord(stop4);
cudaMemcpy(results_kernel , d_results_kernel , n * m *sizeof(float) , cudaMemcpyDeviceToHost);
// test for correct transposed result C(m,n)
for (int i = 0; i< n; i++)
for (int j = 0; j < m; j++)
if (results_kernel[(j*n)+i] != cpu_results_kernel[(i*m)+j]) {printf("cpu/kernel4 mismatch at %d,%d, cpu: %f, kernel4: %f\n", i,j, cpu_results_kernel[(i*m)+j], results_kernel[(j*n)+i]); return 1;}
cudaEventSynchronize(stop4);
cudaEventElapsedTime(&et4, start4, stop4);
cudaFree(d_results_kernel);
printf("Success!\n");
printf("kernel1 : %.fms, kernel2 : %.fms, kernel3 : %.fms, kernel4 : %.fms\n", et1, et2, et3, et4);
free(matrixA);
free(matrixB);
free(results_kernel);
return 0;
}
$ nvcc -O3 -arch=sm_20 -o t460 t460.cu
$ ./t460
Success!
kernel1 : 2213ms, kernel2 : 4660ms, kernel3 : 691ms, kernel4 : 99ms
$
C[...] = sqrtf(...);
) 然而,我所包含的验证假设结果是“在范围内”,以便在
float
中完美存储整数数量。 .您的测试用例满足此要求,但否则需要修改验证代码(如果使用了
sqrtf
)。
关于c++ - 在 CUDA 中增加每个线程的工作量的示例,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/24187038/
我需要将文本放在 中在一个 Div 中,在另一个 Div 中,在另一个 Div 中。所以这是它的样子: #document Change PIN
奇怪的事情发生了。 我有一个基本的 html 代码。 html,头部, body 。(因为我收到了一些反对票,这里是完整的代码) 这是我的CSS: html { backgroun
我正在尝试将 Assets 中的一组图像加载到 UICollectionview 中存在的 ImageView 中,但每当我运行应用程序时它都会显示错误。而且也没有显示图像。 我在ViewDidLoa
我需要根据带参数的 perl 脚本的输出更改一些环境变量。在 tcsh 中,我可以使用别名命令来评估 perl 脚本的输出。 tcsh: alias setsdk 'eval `/localhome/
我使用 Windows 身份验证创建了一个新的 Blazor(服务器端)应用程序,并使用 IIS Express 运行它。它将显示一条消息“Hello Domain\User!”来自右上方的以下 Ra
这是我的方法 void login(Event event);我想知道 Kotlin 中应该如何 最佳答案 在 Kotlin 中通配符运算符是 * 。它指示编译器它是未知的,但一旦知道,就不会有其他类
看下面的代码 for story in book if story.title.length < 140 - var story
我正在尝试用 C 语言学习字符串处理。我写了一个程序,它存储了一些音乐轨道,并帮助用户检查他/她想到的歌曲是否存在于存储的轨道中。这是通过要求用户输入一串字符来完成的。然后程序使用 strstr()
我正在学习 sscanf 并遇到如下格式字符串: sscanf("%[^:]:%[^*=]%*[*=]%n",a,b,&c); 我理解 %[^:] 部分意味着扫描直到遇到 ':' 并将其分配给 a。:
def char_check(x,y): if (str(x) in y or x.find(y) > -1) or (str(y) in x or y.find(x) > -1):
我有一种情况,我想将文本文件中的现有行包含到一个新 block 中。 line 1 line 2 line in block line 3 line 4 应该变成 line 1 line 2 line
我有一个新项目,我正在尝试设置 Django 调试工具栏。首先,我尝试了快速设置,它只涉及将 'debug_toolbar' 添加到我的已安装应用程序列表中。有了这个,当我转到我的根 URL 时,调试
在 Matlab 中,如果我有一个函数 f,例如签名是 f(a,b,c),我可以创建一个只有一个变量 b 的函数,它将使用固定的 a=a1 和 c=c1 调用 f: g = @(b) f(a1, b,
我不明白为什么 ForEach 中的元素之间有多余的垂直间距在 VStack 里面在 ScrollView 里面使用 GeometryReader 时渲染自定义水平分隔线。 Scrol
我想知道,是否有关于何时使用 session 和 cookie 的指南或最佳实践? 什么应该和什么不应该存储在其中?谢谢! 最佳答案 这些文档很好地了解了 session cookie 的安全问题以及
我在 scipy/numpy 中有一个 Nx3 矩阵,我想用它制作一个 3 维条形图,其中 X 轴和 Y 轴由矩阵的第一列和第二列的值、高度确定每个条形的 是矩阵中的第三列,条形的数量由 N 确定。
假设我用两种不同的方式初始化信号量 sem_init(&randomsem,0,1) sem_init(&randomsem,0,0) 现在, sem_wait(&randomsem) 在这两种情况下
我怀疑该值如何存储在“WORD”中,因为 PStr 包含实际输出。? 既然Pstr中存储的是小写到大写的字母,那么在printf中如何将其给出为“WORD”。有人可以吗?解释一下? #include
我有一个 3x3 数组: var my_array = [[0,1,2], [3,4,5], [6,7,8]]; 并想获得它的第一个 2
我意识到您可以使用如下方式轻松检查焦点: var hasFocus = true; $(window).blur(function(){ hasFocus = false; }); $(win
我是一名优秀的程序员,十分优秀!