- android - RelativeLayout 背景可绘制重叠内容
- android - 如何链接 cpufeatures lib 以获取 native android 库?
- java - OnItemClickListener 不起作用,但 OnLongItemClickListener 在自定义 ListView 中起作用
- java - Android 文件转字符串
我在独立模式下运行 spark master 和 slaves,没有 Hadoop 集群。使用 spark-shell,我可以用我的数据快速构建一个 FPGrowthModel。模型建立后,我试图查看模型中捕获的模式和频率,但 spark 卡在 collect() 方法(通过查看 Spark UI)和更大的数据集(200000 * 2000 矩阵数据)。这是我在 spark-shell 中运行的代码:
import org.apache.spark.mllib.fpm.{FPGrowth, FPGrowthModel}
import org.apache.spark.rdd.RDD
val textFile = sc.textFile("/path/to/txt/file")
val data = textFile.map(_.split(" ")).cache()
val fpg = new FPGrowth().setMinSupport(0.9).setNumPartitions(8)
val model = fpg.run(data)
model.freqItemsets.collect().foreach { itemset =>
println(itemset.items.mkString("[", ",", "]") + ", " + itemset.freq)
}
我尝试将 spark shell 内存从 512MB 增加到 2GB,但似乎并没有缓解挂起问题。我不确定是不是因为需要 Hadoop 才能执行此任务,或者我需要增加更多的 spark-shell 内存,或者其他原因。
15/08/10 22:19:40 ERROR TaskSchedulerImpl: Lost executor 0 on 142.103.22.23: remote Rpc client disassociated
15/08/10 22:19:40 WARN ReliableDeliverySupervisor: Association with remote system [akka.tcp://sparkExecutor@142.103.22.23:43440] has failed, address is now gated for [5000] ms. Reason is: [Disassociated].
15/08/10 22:19:40 INFO AppClient$ClientActor: Executor updated: app-20150810163957-0001/0 is now EXITED (Command exited with code 137)
15/08/10 22:19:40 INFO TaskSetManager: Re-queueing tasks for 0 from TaskSet 4.0
15/08/10 22:19:40 INFO SparkDeploySchedulerBackend: Executor app-20150810163957-0001/0 removed: Command exited with code 137
15/08/10 22:19:40 WARN TaskSetManager: Lost task 3.0 in stage 4.0 (TID 59, 142.103.22.23): ExecutorLostFailure (executor 0 lost)
15/08/10 22:19:40 WARN TaskSetManager: Lost task 6.0 in stage 4.0 (TID 62, 142.103.22.23): ExecutorLostFailure (executor 0 lost)
15/08/10 22:19:40 WARN TaskSetManager: Lost task 0.0 in stage 4.0 (TID 56, 142.103.22.23): ExecutorLostFailure (executor 0 lost)
15/08/10 22:19:40 WARN TaskSetManager: Lost task 2.0 in stage 4.0 (TID 58, 142.103.22.23): ExecutorLostFailure (executor 0 lost)
15/08/10 22:19:40 WARN TaskSetManager: Lost task 5.0 in stage 4.0 (TID 61, 142.103.22.23): ExecutorLostFailure (executor 0 lost)
15/08/10 22:19:40 WARN TaskSetManager: Lost task 4.0 in stage 4.0 (TID 60, 142.103.22.23): ExecutorLostFailure (executor 0 lost)
15/08/10 22:19:40 WARN TaskSetManager: Lost task 7.0 in stage 4.0 (TID 63, 142.103.22.23): ExecutorLostFailure (executor 0 lost)
15/08/10 22:19:40 WARN TaskSetManager: Lost task 1.0 in stage 4.0 (TID 57, 142.103.22.23): ExecutorLostFailure (executor 0 lost)
15/08/10 22:19:40 ERROR SparkDeploySchedulerBackend: Asked to remove non-existent executor 0
15/08/10 22:19:40 INFO AppClient$ClientActor: Executor added: app-20150810163957-0001/1 on worker-20150810163259-142.103.22.23-48853 (142.103.22.23:48853) with 8 cores
15/08/10 22:19:40 INFO SparkDeploySchedulerBackend: Granted executor ID app-20150810163957-0001/1 on hostPort 142.103.22.23:48853 with 8 cores, 15.0 GB RAM
15/08/10 22:19:40 INFO AppClient$ClientActor: Executor updated: app-20150810163957-0001/1 is now LOADING
15/08/10 22:19:40 INFO DAGScheduler: Executor lost: 0 (epoch 2)
15/08/10 22:19:40 INFO AppClient$ClientActor: Executor updated: app-20150810163957-0001/1 is now RUNNING
15/08/10 22:19:40 INFO BlockManagerMasterEndpoint: Trying to remove executor 0 from BlockManagerMaster.
15/08/10 22:19:40 INFO BlockManagerMasterEndpoint: Removing block manager BlockManagerId(0, 142.103.22.23, 37411)
15/08/10 22:19:40 INFO BlockManagerMaster: Removed 0 successfully in removeExecutor
15/08/10 22:19:40 INFO ShuffleMapStage: ShuffleMapStage 3 is now unavailable on executor 0 (0/16, false)
最佳答案
如果数据集很大,你不应该运行 .collect(),比如如果它有几 GB,你不应该使用它,它有助于加快进行多次评估的速度。 在不收集的情况下运行 foreach 循环。
关于hadoop - 如何从 Spark MLlib FP Growth 模型中提取数据,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/31925635/
我们有数据(此时未分配)要转换/聚合/透视到 wazoo。 我在 www 上看了看,我问的所有答案都指向 hadoop 可扩展、运行便宜(没有 SQL 服务器机器和许可证)、快速(如果你有足够的数据)
这很明显,我们都同意我们可以将 HDFS + YARN + MapReduce 称为 Hadoop。但是,Hadoop 生态系统中的其他不同组合和其他产品会怎样? 例如,HDFS + YARN + S
如果 es-hadoop 只是连接到 HDFS 的 Hadoop 连接器,它如何支持 Hadoop 分析? 最佳答案 我假设您指的是 this project .在这种情况下,ES Hadoop 项目
看完this和 this论文,我决定我想在 MapReduce 上为大型数据集实现分布式体积渲染设置作为我的本科论文工作。 Hadoop 是一个合理的选择吗? Java 不会扼杀一些性能提升或使与 C
我一直在尝试查找有关如何通过命令行提交 hadoop 作业的信息。 我知道命令 - hadoop jar jar-file 主类输入输出 还有另一个命令,我正在尝试查找有关它的信息,但未能找到 - h
Hadoop 服务器在 Kubernetes 中。而Hadoop客户端位于外网。所以我尝试使用 kubernetes-service 来使用 Hadoop 服务器。但是 hadoop fs -put
有没有人遇到奇怪的环境问题,在调用 hadoop 命令时被迫使用 SU 而不是 SUDO? sudo su -c 'hadoop fs -ls /' hdfs Found 4 itemsdrwxr-x
在更改 mapred-site.xml 中的属性后,我给出了一个 tar.bz2 文件、.gz 和 tar.gz 文件作为输入。以上似乎都没有奏效。我假设这里发生的是 hadoop 作为输入读取的记录
如何在 Hadoop Pipes 中获取正在 hadoop 映射器 中执行的输入文件 名称? 我可以很容易地在基于 java 的 map reducer 中获取文件名,比如 FileSplit fil
我想使用 MapReduce 方法分析连续的数据流(通过 HTTP 访问),因此我一直在研究 Apache Hadoop。不幸的是,Hadoop 似乎期望以固定大小的输入文件开始作业,而不是能够在新数
名称节点可以执行任务吗?默认情况下,任务在集群的数据节点上执行。 最佳答案 假设您正在询问MapReduce ... 使用YARN,MapReduce任务在应用程序主数据库中执行,而不是在nameno
我有一个关系A包含 (zip-code). 我还有另一个关系B包含 (name:gender:zip-code) (x:m:1234) (y:f:1234) (z:m:1245) (s:f:1235)
我是hadoop地区的新手。您能帮我负责(k2,list[v2,v2,v2...])形式的输出(意味着将键及其所有关联值组合在一起)的责任是吗? 谢谢。 最佳答案 这是Hadoop的MapReduce
因此,我一直在尝试编写一个hadoop程序,该程序将输入作为一个包含许多文件的文件,并且我希望hadoop程序的输出仅是输入文件的一行。但是我还没有做到这一点。我也不想去 reducer 课。如果有人
我使用的输入文本文件的内容是 1 "Come 1 "Defects," 1 "I 1 "Information 1 "J" 2 "Plain 5 "Project 1
谁能告诉我以下grep命令的作用: $ bin/hadoop jar hadoop-*-examples.jar grep input output 'dfs[a-z.]+' 最佳答案 http:/
我不了解mapreducer的基本功能,mapreducer是否有助于将文件放入HDFS 或mapreducer仅有助于分析HDFS中现有文件中的内容 我对hadoop非常陌生,任何人都可以指导我理解
CopyFromLocal将从本地文件系统上载数据。 不要放会从任何文件上传数据,例如。本地FS,亚马逊S3 或仅来自本地fs ??? 最佳答案 请找到两个命令的用法。 put ======= Usa
我开始研究hadoop mapreduce。 我是Java和hadoop的初学者,并且了解hadoop mapreduce的编码,但是有兴趣了解它在云中的内部工作方式。 您能否分享一些很好的链接来说明
我一直在寻找Hadoop mapreduce类的类路径。我正在使用Hortonworks 2.2.4版沙箱。我需要这样的类路径来运行我的javac编译器: javac -cp (CLASS_PATH)
我是一名优秀的程序员,十分优秀!