- android - RelativeLayout 背景可绘制重叠内容
- android - 如何链接 cpufeatures lib 以获取 native android 库?
- java - OnItemClickListener 不起作用,但 OnLongItemClickListener 在自定义 ListView 中起作用
- java - Android 文件转字符串
我正在测试由 4 个 docker 容器组成的 hadoop 集群:
当我提交 map reduce 作业时,一旦 map 和 reduce 都达到 100%,我就会注意到连接问题。然后在出错和提供堆栈跟踪之前达到最大重试次数。奇怪的是作业完成并提供了答案。但是,节点管理器 Web 界面显示作业失败。到目前为止,我发现的问题/答案都没有解决我的特定问题。
我所有的机器都公开了端口范围 50100:50200 以符合“yarn.app.mapreduce.am.job.client.port-range”属性。
我提交的作业是
sudo -u hdfs hadoop jar /usr/lib/hadoop-mapreduce/hadoop-mapreduce-examples-2.6.0-cdh5.7.1.jar pi 1 1
这是输出:
Number of Maps = 1
Samples per Map = 1
Wrote input for Map #0
Starting Job
16/06/18 19:14:07 INFO client.RMProxy: Connecting to ResourceManager at resource-manager/172.19.0.2:8032
16/06/18 19:14:08 INFO input.FileInputFormat: Total input paths to process : 1
16/06/18 19:14:08 INFO mapreduce.JobSubmitter: number of splits:1
16/06/18 19:14:08 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1466277178029_0001
16/06/18 19:14:08 INFO impl.YarnClientImpl: Submitted application application_1466277178029_0001
16/06/18 19:14:08 INFO mapreduce.Job: The url to track the job: http://resource-manager:8088/proxy/application_1466277178029_0001/
16/06/18 19:14:08 INFO mapreduce.Job: Running job: job_1466277178029_0001
16/06/18 19:14:15 INFO mapreduce.Job: Job job_1466277178029_0001 running in uber mode : false
16/06/18 19:14:15 INFO mapreduce.Job: map 0% reduce 0%
16/06/18 19:14:19 INFO mapreduce.Job: map 100% reduce 0%
16/06/18 19:14:26 INFO mapreduce.Job: map 100% reduce 100%
16/06/18 19:14:32 INFO ipc.Client: Retrying connect to server: 01d3c03f829a/172.19.0.4:50100. Already tried 0 time(s); retry policy is RetryUpToMaximumCountWithFixedSleep(maxRetries=3, sleepTime=1000 MILLISECONDS)
16/06/18 19:14:33 INFO ipc.Client: Retrying connect to server: 01d3c03f829a/172.19.0.4:50100. Already tried 1 time(s); retry policy is RetryUpToMaximumCountWithFixedSleep(maxRetries=3, sleepTime=1000 MILLISECONDS)
16/06/18 19:14:34 INFO ipc.Client: Retrying connect to server: 01d3c03f829a/172.19.0.4:50100. Already tried 2 time(s); retry policy is RetryUpToMaximumCountWithFixedSleep(maxRetries=3, sleepTime=1000 MILLISECONDS)
16/06/18 19:14:36 INFO mapreduce.Job: map 0% reduce 0%
16/06/18 19:14:36 INFO mapreduce.Job: Job job_1466277178029_0001 failed with state FAILED due to: Application application_1466277178029_0001 failed 2 times due to AM Container for appattempt_1466277178029_0001_000002 exited with exitCode: 1
For more detailed output, check application tracking page:http://resource-manager:8088/proxy/application_1466277178029_0001/AThen, click on links to logs of each attempt.
Diagnostics: Exception from container-launch.
Container id: container_1466277178029_0001_02_000001
Exit code: 1
Stack trace: ExitCodeException exitCode=1:
at org.apache.hadoop.util.Shell.runCommand(Shell.java:561)
at org.apache.hadoop.util.Shell.run(Shell.java:478)
at org.apache.hadoop.util.Shell$ShellCommandExecutor.execute(Shell.java:738)
at org.apache.hadoop.yarn.server.nodemanager.DefaultContainerExecutor.launchContainer(DefaultContainerExecutor.java:213)
at org.apache.hadoop.yarn.server.nodemanager.containermanager.launcher.ContainerLaunch.call(ContainerLaunch.java:302)
at org.apache.hadoop.yarn.server.nodemanager.containermanager.launcher.ContainerLaunch.call(ContainerLaunch.java:82)
at java.util.concurrent.FutureTask.run(FutureTask.java:266)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
Container exited with a non-zero exit code 1
Failing this attempt. Failing the application.
16/06/18 19:14:36 INFO mapreduce.Job: Counters: 0
Job Finished in 28.862 seconds
Estimated value of Pi is 4.00000000000000000000
容器日志有以下内容:
2016-06-18 19:14:32,273 INFO [main] org.apache.hadoop.mapreduce.v2.app.MRAppMaster: Created MRAppMaster for application appattempt_1466277178029_0001_000002
2016-06-18 19:14:32,443 WARN [main] org.apache.hadoop.util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
2016-06-18 19:14:32,475 INFO [main] org.apache.hadoop.mapreduce.v2.app.MRAppMaster: Executing with tokens:
2016-06-18 19:14:32,477 INFO [main] org.apache.hadoop.mapreduce.v2.app.MRAppMaster: Kind: YARN_AM_RM_TOKEN, Service: , Ident: (org.apache.hadoop.yarn.security.AMRMTokenIdentifier@3514a4c0)
2016-06-18 19:14:32,515 INFO [main] org.apache.hadoop.mapreduce.v2.app.MRAppMaster: Using mapred newApiCommitter.
2016-06-18 19:14:33,060 INFO [main] org.apache.hadoop.mapreduce.v2.app.MRAppMaster: Attempt num: 2 is last retry: true because a commit was started.
2016-06-18 19:14:33,061 INFO [main] org.apache.hadoop.yarn.event.AsyncDispatcher: Registering class org.apache.hadoop.mapreduce.v2.app.job.event.JobEventType for class org.apache.hadoop.mapreduce.v2.app.MRAppMaster$NoopEventHandler
2016-06-18 19:14:33,067 INFO [main] org.apache.hadoop.yarn.event.AsyncDispatcher: Registering class org.apache.hadoop.mapreduce.jobhistory.EventType for class org.apache.hadoop.mapreduce.jobhistory.JobHistoryEventHandler
2016-06-18 19:14:33,068 INFO [main] org.apache.hadoop.yarn.event.AsyncDispatcher: Registering class org.apache.hadoop.mapreduce.v2.app.rm.ContainerAllocator$EventType for class org.apache.hadoop.mapreduce.v2.app.MRAppMaster$ContainerAllocatorRouter
2016-06-18 19:14:33,118 INFO [main] org.apache.hadoop.mapreduce.v2.jobhistory.JobHistoryUtils: Default file system is set solely by core-default.xml therefore - ignoring
2016-06-18 19:14:33,141 INFO [main] org.apache.hadoop.mapreduce.v2.jobhistory.JobHistoryUtils: Default file system is set solely by core-default.xml therefore - ignoring
2016-06-18 19:14:33,162 INFO [main] org.apache.hadoop.mapreduce.v2.jobhistory.JobHistoryUtils: Default file system is set solely by core-default.xml therefore - ignoring
2016-06-18 19:14:33,183 INFO [main] org.apache.hadoop.mapreduce.jobhistory.JobHistoryEventHandler: Emitting job history data to the timeline server is not enabled
2016-06-18 19:14:33,185 INFO [main] org.apache.hadoop.mapreduce.v2.app.MRAppMaster: Will not try to recover. recoveryEnabled: true recoverySupportedByCommitter: false numReduceTasks: 1 shuffleKeyValidForRecovery: true ApplicationAttemptID: 2
2016-06-18 19:14:33,210 INFO [main] org.apache.hadoop.mapreduce.v2.jobhistory.JobHistoryUtils: Default file system is set solely by core-default.xml therefore - ignoring
2016-06-18 19:14:33,212 INFO [main] org.apache.hadoop.mapreduce.v2.app.MRAppMaster: Previous history file is at hdfs://namenode:9000/user/hdfs/.staging/job_1466277178029_0001/job_1466277178029_0001_1.jhist
2016-06-18 19:14:33,621 INFO [main] org.apache.hadoop.yarn.event.AsyncDispatcher: Registering class org.apache.hadoop.mapreduce.v2.app.job.event.JobFinishEvent$Type for class org.apache.hadoop.mapreduce.v2.app.MRAppMaster$JobFinishEventHandler
2016-06-18 19:14:33,640 WARN [main] org.apache.hadoop.metrics2.impl.MetricsConfig: Cannot locate configuration: tried hadoop-metrics2-mrappmaster.properties,hadoop-metrics2.properties
2016-06-18 19:14:33,689 INFO [main] org.apache.hadoop.metrics2.impl.MetricsSystemImpl: Scheduled snapshot period at 10 second(s).
2016-06-18 19:14:33,689 INFO [main] org.apache.hadoop.metrics2.impl.MetricsSystemImpl: MRAppMaster metrics system started
2016-06-18 19:14:33,708 INFO [main] org.apache.hadoop.mapreduce.v2.app.rm.RMContainerRequestor: nodeBlacklistingEnabled:true
2016-06-18 19:14:33,708 INFO [main] org.apache.hadoop.mapreduce.v2.app.rm.RMContainerRequestor: maxTaskFailuresPerNode is 3
2016-06-18 19:14:33,708 INFO [main] org.apache.hadoop.mapreduce.v2.app.rm.RMContainerRequestor: blacklistDisablePercent is 33
2016-06-18 19:14:33,739 INFO [main] org.apache.hadoop.yarn.client.RMProxy: Connecting to ResourceManager at resource-manager/172.19.0.2:8030
2016-06-18 19:14:33,814 INFO [main] org.apache.hadoop.mapreduce.v2.app.rm.RMContainerAllocator: maxContainerCapability: <memory:4096, vCores:4>
2016-06-18 19:14:33,814 INFO [main] org.apache.hadoop.mapreduce.v2.app.rm.RMContainerAllocator: queue: root.hdfs
2016-06-18 19:14:33,837 INFO [main] org.apache.hadoop.mapreduce.v2.jobhistory.JobHistoryUtils: Default file system is set solely by core-default.xml therefore - ignoring
2016-06-18 19:14:33,840 INFO [main] org.apache.hadoop.mapreduce.jobhistory.JobHistoryCopyService: History file is at hdfs://namenode:9000/user/hdfs/.staging/job_1466277178029_0001/job_1466277178029_0001_1.jhist
2016-06-18 19:14:33,894 INFO [eventHandlingThread] org.apache.hadoop.mapreduce.jobhistory.JobHistoryEventHandler: Event Writer setup for JobId: job_1466277178029_0001, File: hdfs://namenode:9000/user/hdfs/.staging/job_1466277178029_0001/job_1466277178029_0001_2.jhist
2016-06-18 19:14:33,959 WARN [main] org.apache.hadoop.security.UserGroupInformation: PriviledgedActionException as:hdfs (auth:SIMPLE) cause:java.io.IOException: Was asked to shut down.
2016-06-18 19:14:33,959 FATAL [main] org.apache.hadoop.mapreduce.v2.app.MRAppMaster: Error starting MRAppMaster
java.io.IOException: Was asked to shut down.
at org.apache.hadoop.mapreduce.v2.app.MRAppMaster$4.run(MRAppMaster.java:1546)
at java.security.AccessController.doPrivileged(Native Method)
at javax.security.auth.Subject.doAs(Subject.java:422)
at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1693)
at org.apache.hadoop.mapreduce.v2.app.MRAppMaster.initAndStartAppMaster(MRAppMaster.java:1540)
at org.apache.hadoop.mapreduce.v2.app.MRAppMaster.main(MRAppMaster.java:1473)
2016-06-18 19:14:33,962 INFO [main] org.apache.hadoop.util.ExitUtil: Exiting with status 1
有几次它说“找不到配置”或“默认文件系统仅由 core-default.xml 设置”。这很重要吗?如果这改变了任何东西,我将使用 cloudera 存储库来安装各种 hadoop 服务,而不是解压缩 .tar.gz。
我的配置文件是:
核心站点.xml
<configuration>
<property>
<name>fs.defaultFS</name>
<value>hdfs://namenode:9000</value>
</property>
<property>
<name>hadoop.proxyuser.mapred.groups</name>
<value>*</value>
</property>
<property>
<name>hadoop.proxyuser.mapred.hosts</name>
<value>*</value>
</property>
</configuration>
yar-site.xml
<configuration>
<property>
<name>yarn.resourcemanager.hostname</name>
<value>resource-manager</value>
</property>
<property>
<name>yarn.resourcemanager.address</name>
<value>resource-manager:8032</value>
</property>
<property>
<name>yarn.resourcemanager.scheduler.address</name>
<value>resource-manager:8030</value>
</property>
<property>
<description>Classpath for typical applications.</description>
<name>yarn.application.classpath</name>
<value>
$HADOOP_CONF_DIR,
$HADOOP_COMMON_HOME/*,$HADOOP_COMMON_HOME/lib/*,
$HADOOP_HDFS_HOME/*,$HADOOP_HDFS_HOME/lib/*,
$HADOOP_MAPRED_HOME/*,$HADOOP_MAPRED_HOME/lib/*,
$HADOOP_YARN_HOME/*,$HADOOP_YARN_HOME/lib/*
</value>
</property>
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
<property>
<name>yarn.nodemanager.local-dirs</name>
<value>file:///data/1/yarn/local,file:///data/2/yarn/local,file:///data/3/yarn/local</value>
</property>
<property>
<name>yarn.nodemanager.log-dirs</name>
<value>file:///data/1/yarn/logs,file:///data/2/yarn/logs,file:///data/3/yarn/logs</value>
</property>
<property>
<name>yarn.log.aggregation-enable</name>
<value>true</value>
</property>
<property>
<description>Where to aggregate logs</description>
<name>yarn.nodemanager.remote-app-log-dir</name>
<value>hdfs://namenode:8020/var/log/hadoop-yarn/apps</value>
</property>
<property>
<name>yarn.resourcemanager.webapp.address</name>
<value>resource-manager:8088</value>
</property>
<property>
<name>yarn.resourcemanager.resource-tracker.address</name>
<value>resource-manager:8031</value>
</property>
<property>
<name>yarn.resourcemanager.admin.address</name>
<value>resource-manager:8033</value>
</property>
<property>
<name>yarn.nodemanager.delete.debug-delay-sec</name>
<value>600</value>
</property>
<property>
<name>yarn.nodemanager.resource.memory-mb</name>
<value>4096</value>
<description>Amount of physical memory, in MB, that can be allocated for containers.</description>
</property>
<property>
<name>yarn.scheduler.minimum-allocation-mb</name>
<value>1000</value>
</property>
</configuration>
mapred-site.xml
<configuration>
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
<property>
<name>mapred.job.tracker</name>
<value>namenode:8021</value>
</property>
<property>
<name>yarn.app.mapreduce.am.staging-dir</name>
<value>/user</value>
</property>
<property>
<name>mapreduce.jobhistory.address</name>
<value>history-server:10020</value>
<description>Enter your JobHistoryServer hostname.</description>
</property>
<property>
<name>mapreduce.jobhistory.webapp.address</name>
<value>history-server:19888</value>
<description>Enter your JobHistoryServer hostname.</description>
</property>
<property>
<name>yarn.app.mapreduce.am.job.client.port-range</name>
<value>50100-50200</value>
</property>
</configuration>
hdfs-site.xml
<configuration>
<property>
<name>dfs.permissions.superusergroup</name>
<value>hadoop</value>
</property>
<property>
<name>dfs.name.dir or dfs.namenode.name.dir</name>
<value>file:///data/1/dfs/nn,file:///nfsmount/dfs/nn</value>
</property>
<property>
<name>dfs.data.dir or dfs.datanode.data.dir</name>
<value>file:///data/1/dfs/dn,file:///data/2/dfs/dn,file:///data/3/dfs/dn,file:///data/4/dfs/dn</value>
</property>
<property>
<name>dfs.namenode.http-address</name>
<value>namenode:50070</value>
<description>
The address and the base port on which the dfs NameNode Web UI will listen.
</description>
</property>
<property>
<name>dfs.webhdfs.enabled</name>
<value>true</value>
</property>
</configuration>
感谢阅读。
最佳答案
对于遇到相同问题的任何人,解决方案是将以下内容添加到 hdfs-site.xml:
<property>
<name>dfs.safemode.threshold.pct</name>
<value>0</value>
</property>
关于hadoop - Mapreduce 作业 ipc.Client 重试连接,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/37901108/
我的主要流程(重要代码): let introWindow let win = null function createWindow() { // Create the browser win
信号量是一种 IPC 机制吗? 最佳答案 是的,在许多平台下,信号量可以跨进程同步。您将为此使用“命名”信号量——多个进程通过名称访问对象,类似于文件系统对象。 在 POSIX 中,您可以通过 sem
我一直在关注 Thrift 对 Windows 和 VS 开发的支持,感谢许多贡献者,它已经取得了长足的进步。有针对编译器和 C++ 库的 VS 2010 项目,我已经确认它们在 0.8 中运行良好。
或者它们是同义词吗? 最佳答案 维基百科通常非常适合这些目的。 RPC: Remote procedure call (RPC) is an Inter-process communication t
是否有标准库的一部分? 我一直在四处挖掘,但我看不到任何明显的实现它的东西,或者在 Process 上的任何东西可以让你这样做? 我错过了吗?还是我必须为此功能做一些 C 包装器工作? (如果是这样,
我计划在同一主机上运行的两个进程之间为我的 IPC(进程间通信)使用 unix 域套接字。但在选择 unix 套接字之前,我还必须研究数据安全性。 我只是想知道如果我使用 unix 套接字而不加密我在
System V IPC 和 POSIX IPC 之间有什么区别? 为什么我们有两个标准? 如何决定使用哪些 IPC 函数? 最佳答案 两者都有相同的基本工具——信号量、共享内存和消息队列。它们提供的
在我的menu.js中的“label:'Database'”下,单击事件返回错误:ipc未定义。我想,如果这是 main.js 文件的一部分,并且如果我已经在全局范围内声明了一个 const 为 ip
我正在设置两个 docker 容器 - 一个作为服务器在内存中保存数据,另一个作为客户端访问该数据。为此,我相信我需要使用 --ipc在容器之间共享内存的标志。 Docker documentatio
我正在尝试使用来自 HDFS 的文件运行 flink 作业。我创建了一个数据集如下 - DataSource> visits = env.readHadoopFile(new TextInputFor
我在 NetBeans IDE 8.0.2 中使用 hadoop 2.7.0 和 java oracle jdk1.7.0_79。当我尝试使用 Java 文件与 Hadoop 通信时,出现以下错误。是
我一直在使用 Electrons 同步和异步 RPC 通信机制,并且可以很好地在进程之间传递我的数据。但是,我现在需要不断地向渲染器进程发送事件数据(有点像聊天应用程序)并更新一些文本。 这在 Ele
我正在用 Go 编写一个负载平衡的服务器系统。 负载平衡服务器将与多个应用服务器通信并处理请求。这些服务器既可以在同一台机器上运行,也可以在网络上运行。 我已经弄清楚了网络,但现在我需要为负载均衡器找
我有一个关于操作系统中进程间通信的问题。 两个进程是否可以通过打开同一个文件(据说是在两个进程之前创建的,所以两个进程都有文件处理程序)然后通过写入该文件进行通信来相互通信? 如果是,这个方法属于什么
Closed. This question is opinion-based。它当前不接受答案。 想改善这个问题吗?更新问题,以便editing this post用事实和引用来回答。 6年前关闭。
我有一个使用 System V 共享内存段的应用程序。通常它在内部管理这些,没有人需要接触它们。但对于紧急情况,我们有一个实用程序可以手动清除共享内存段。 问题是,为了做到这一点,它运行ipcs,并使
当使用node-ipc通过IPC在NodeJS进程之间进行通信时,启动服务器并监听连接,或者创建客户端并连接到服务器似乎非常简单。 但是有些事情看起来并不那么简单: How can the serve
我正在寻找有关我可以在我自制的 AVR32 板操作系统中实现的可能 IPC 机制的建议。 我目前的选择是实现 Tanenbaum 所写书籍中描述的按摩传递机制。 这是一个不错的选择吗?有没有更简单的方
我去面试了。面试官问我: If two nodes are sending two messages of the same identifier (0x100) with different dat
我正在寻找一种进程间通信工具,可以在相同或不同系统上运行的语言和/或环境之间使用。例如,它应该允许在 Java、C# 和/或 C++ 组件之间发送信号,并且还应该支持某种排队机制。唯一明显与环境和语言
我是一名优秀的程序员,十分优秀!