- android - RelativeLayout 背景可绘制重叠内容
- android - 如何链接 cpufeatures lib 以获取 native android 库?
- java - OnItemClickListener 不起作用,但 OnLongItemClickListener 在自定义 ListView 中起作用
- java - Android 文件转字符串
我正在使用编译和运行来自 Features2D + Homography to find a known object 的代码教程,我得到了这个
OpenCV Error: Assertion failed (npoints >= 0 && points2.checkVector(2) == npoint
s && points1.type() == points2.type()) in unknown function, file c:\Users\vp\wor
k\ocv\opencv\modules\calib3d\src\fundam.cpp, line 1062
运行时错误。调试后发现程序在 findHomography 函数处崩溃。
Unhandled exception at 0x760ab727 in OpenCVTemplateMatch.exe: Microsoft C++ exception: cv::Exception at memory location 0x0029eb3c..
在Introduction OpenCV 的“cv 命名空间”一章说
Some of the current or future OpenCV external names may conflict with STL or other libraries. In this case, use explicit namespace specifiers to resolve the name conflicts:
我更改了我的代码并在所有地方都使用了显式命名空间说明符,但问题并没有解决。如果可以,请帮助我解决这个问题,或者说哪个函数与 findHomography 做同样的事情,并且不要使程序崩溃。
这是我的代码
#include <stdio.h>
#include <iostream>
#include "opencv2/core/core.hpp"
#include "opencv2/features2d/features2d.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/calib3d/calib3d.hpp"
void readme();
/** @function main */
int main( int argc, char** argv )
{
if( argc != 3 )
{ readme(); return -1; }
cv::Mat img_object = cv::imread( argv[1], CV_LOAD_IMAGE_GRAYSCALE );
cv::Mat img_scene = cv::imread( argv[2], CV_LOAD_IMAGE_GRAYSCALE );
if( !img_object.data || !img_scene.data )
{ std::cout<< " --(!) Error reading images " << std::endl; return -1; }
//-- Step 1: Detect the keypoints using SURF Detector
int minHessian = 400;
cv::SurfFeatureDetector detector( minHessian );
std::vector<cv::KeyPoint> keypoints_object, keypoints_scene;
detector.detect( img_object, keypoints_object );
detector.detect( img_scene, keypoints_scene );
//-- Step 2: Calculate descriptors (feature vectors)
cv::SurfDescriptorExtractor extractor;
cv::Mat descriptors_object, descriptors_scene;
extractor.compute( img_object, keypoints_object, descriptors_object );
extractor.compute( img_scene, keypoints_scene, descriptors_scene );
//-- Step 3: Matching descriptor vectors using FLANN matcher
cv::FlannBasedMatcher matcher;
std::vector< cv::DMatch > matches;
matcher.match( descriptors_object, descriptors_scene, matches );
double max_dist = 0; double min_dist = 100;
//-- Quick calculation of max and min distances between keypoints
for( int i = 0; i < descriptors_object.rows; i++ )
{ double dist = matches[i].distance;
if( dist < min_dist ) min_dist = dist;
if( dist > max_dist ) max_dist = dist;
}
printf("-- Max dist : %f \n", max_dist );
printf("-- Min dist : %f \n", min_dist );
//-- Draw only "good" matches (i.e. whose distance is less than 3*min_dist )
std::vector< cv::DMatch > good_matches;
for( int i = 0; i < descriptors_object.rows; i++ )
{ if( matches[i].distance < 3*min_dist )
{ good_matches.push_back( matches[i]); }
}
cv::Mat img_matches;
cv::drawMatches( img_object, keypoints_object, img_scene, keypoints_scene,
good_matches, img_matches, cv::Scalar::all(-1), cv::Scalar::all(-1),
std::vector<char>(), cv::DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS );
//-- Localize the object
std::vector<cv::Point2f> obj;
std::vector<cv::Point2f> scene;
for( int i = 0; i < good_matches.size(); i++ )
{
//-- Get the keypoints from the good matches
obj.push_back( keypoints_object[ good_matches[i].queryIdx ].pt );
scene.push_back( keypoints_scene[ good_matches[i].trainIdx ].pt );
}
cv::Mat H = cv::findHomography( obj, scene, CV_RANSAC );
//-- Get the corners from the image_1 ( the object to be "detected" )
std::vector<cv::Point2f> obj_corners(4);
obj_corners[0] = cvPoint(0,0); obj_corners[1] = cvPoint( img_object.cols, 0 );
obj_corners[2] = cvPoint( img_object.cols, img_object.rows ); obj_corners[3] = cvPoint( 0, img_object.rows );
std::vector<cv::Point2f> scene_corners(4);
cv::perspectiveTransform( obj_corners, scene_corners, H);
//-- Draw lines between the corners (the mapped object in the scene - image_2 )
cv::line( img_matches, scene_corners[0] + cv::Point2f( img_object.cols, 0), scene_corners[1] + cv::Point2f( img_object.cols, 0), cv::Scalar(0, 255, 0), 4 );
cv::line( img_matches, scene_corners[1] + cv::Point2f( img_object.cols, 0), scene_corners[2] + cv::Point2f( img_object.cols, 0), cv::Scalar( 0, 255, 0), 4 );
cv::line( img_matches, scene_corners[2] + cv::Point2f( img_object.cols, 0), scene_corners[3] + cv::Point2f( img_object.cols, 0), cv::Scalar( 0, 255, 0), 4 );
cv::line( img_matches, scene_corners[3] + cv::Point2f( img_object.cols, 0), scene_corners[0] + cv::Point2f( img_object.cols, 0), cv::Scalar( 0, 255, 0), 4 );
//-- Show detected matches
cv::imshow( "Good Matches & Object detection", img_matches );
cv::waitKey(0);
return 0;
}
/** @function readme */
void readme()
{ std::cout << " Usage: ./SURF_descriptor <img1> <img2>" << std::endl; }
最佳答案
今天我遇到了这个示例代码的同样问题。 @mathematical-coffee 是对的,没有提取任何特征,因此 obj 和 scene 是空的。我更换了测试图片并且有效。您无法从纹理风格的图像中提取 SURF 特征。
另一种方法是降低参数 minHessianve.g。 `int minHessian = 20;
或通过更改几行来使用 FAST 特征检测器:
//-- Step 1: Detect the keypoints using SURF Detector
int minHessian = 15;
FastFeatureDetector detector( minHessian );
关于c++ - OpenCV cv::findHomography 运行时错误,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/8520250/
我到处都找了很多,找不到我的问题的答案。我试图从这个线程复制一个文本检测软件(Extracting text OpenCV)但是在代码的末尾有一条消息错误说没有匹配的矩形,即使我已经在上面绘制了一个并
我已经彻底搜索过,但没有找到直接的答案。 将 opencv 矩阵 (cv::Mat) 作为参数传递给函数,我们传递的是智能指针。我们对函数内部的输入矩阵所做的任何更改也会改变函数范围之外的矩阵。 我读
在我的应用程序中,我有一个通过引用接收 cv::Mat 对象的函数。这是函数的声明: void getChains(cv::Mat &img,std::vector &chains,cv::
我正在使用 Qt 编写一个 GUI 程序,并使用 OpenCV 进行一些视频处理。我在主 GUI 线程的标签中显示 OpenCV 进程(在单独的线程中)的结果。 我遇到的问题是 cv::waitKey
Mat a = (Mat_(3,3) = 2 int dims; //! the number of rows and columns or (-1, -1) when the arr
我尝试运行下面的代码,但出现错误。我正在为名为“Mat::at”的 OpenCV 函数创建一个包装器,并尝试使用“G++”将其编译为 Ubuntu Trusty 上的“.so”。我在下面列出了“.cp
我在 C# 中使用 EmguCV,当我想从网络摄像头抓取帧时遇到问题,语句中出现红色下划线: imgOrg = capturecam.QueryFrame(); error: Cannot impli
我正在尝试从另外两个矩阵生成一个 cv::Mat C,以便获得第三个矩阵,该矩阵由通过组合矩阵 A 和 B 的一维点生成的二维点构成。 我的问题是,我尝试的所有操作都只是连接矩阵,并没有真正将每个点与
我用 cv.imread在 python 中读取 png 文件。然后当我使用 cv.imwrite立即保存图像的功能我然后发现图像中的颜色略有变化。我正在尝试在此图像上执行字符识别,而 OCR 在 p
我尝试将 cv::bitwise_not 转换为 double 值的 cv::Mat 矩阵。我申请了 cv::bitwise_not(img, imgtemp); img是0和1的CV_64F数据。但
我正在尝试使用函数 cv.glmnet 找到最佳的 lambda(使用 RIDGE 回归)以预测某些对象的归属类别。所以我使用的代码是: CVGLM<-cv.glmnet(x,y,nfolds=34,
我有这个方法: static void WriteMatVect(const std::string& filename, const std::vector& mats); ... void Fil
下面的转换是我想要做的。 对于源图像中的每个图 block ,我知道每个角的坐标,并且我知道输出图像中每个对应角的坐标,所以我可以调用 cvWarpPerspective 扭曲每个图 block ,然
我必须在C++ / CLI中的托管和非托管代码中都使用OpenCV。 我正在尝试在托管代码中使用Emgu CV来包装OpenCV对象,但是在进行转换时遇到了麻烦。 我该怎么做: Emgu::CV::M
我正在尝试在 cv::Mat 中使用 CV_32FC4,以便它存储 RGBA32 图像。但是当我使用 cv::imwrite 将其保存为 png 文件时,结果文件始终是一个空图像。 例如,我创建了这样
无法在 VS 2017 中设置 OpenCV。我做错了什么?是的,我已将所有其他帖子设为红色。 代码: #include "opencv2/highgui/highgui.hpp" u
我有两个(相同大小,相同类型)cv:Mat 让我们称它们为 A,B。我还有另一个 cv::Mat,它是一个掩码(0 和 1 值或其他值,0 和 255 也适用)让我们称它为 M。 我需要构造一个新的
使用 OpenCV 中实现的 Scalar 类,我不明白这段代码有什么区别: Mat test; test = Scalar::all(0); 还有这个: Mat test = Scalar::all
我对这行代码感到困惑: cv::Mat_::iterator 我知道 Mat_ 属于 cv 命名空间和 vec3b 也。但是之后的最后一个 :: 操作符和 iterator 让我感到困惑!它也属于 c
我想优雅地将 Mat 转换为 Vec3f。目前我是这样做的: Mat line; Vec3f ln; ln[0] = line.
我是一名优秀的程序员,十分优秀!