gpt4 book ai didi

hadoop - 无法识别我的 Reducer 连接代码中的错误

转载 作者:可可西里 更新时间:2023-11-01 15:58:48 24 4
gpt4 key购买 nike

我有两个数据集:
用户:

Bobby 06 Amsterdam
Sunny 07 Rotterdam
Steven 08 Liverpool
Jamie 23 Liverpool
Macca 91 Liverpool
Messi 10 Barcelona
Pique 04 Barcelona
Suarez 09 Barcelona
Neymar 11 brazil
Klopp 12 Liverpool

用户日志:

Sunny NewPlayer 12.23.14.421
Klopp Crazy 88.33.44.555
Bobby NewPlayer 99.12.11.222
Steven Captain 99.55.66.777
Jamie Local 88.99.33.232
Suarez Spain 77.55.66.444

我想使用 reducer join 来连接这两个数据集。我以这种方式编写我的类(class):

映射类:

Public class MapperClass {
public static class UserMap extends Mapper<LongWritable, Text, Text, Text> {
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String line = value.toString();
String[] tokens = line.split(" ");
String name = tokens[0];
String city = tokens[2];
context.write(new Text(name), new Text("UserFile" + "\t" + city));
}
}

public static class UserLogs extends Mapper<LongWritable, Text, Text, Text> {
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String line = value.toString();
String[] tokens = line.split(" ");
String name = tokens[0];
String ip = tokens[2];
context.write(new Text(name), new Text("UserLogs" + "\t" + ip));
}
}
}

reducer 类:

public class ReducerClass extends Reducer<Text, Text, Text, Text>{
@Override
public void reduce(Text key, Iterable<Text> values, Context context) throws IOException, InterruptedException {
String city = null;
String ip = null;
for(Text t: values) {
String[] parts = t.toString().split("\t");
if(parts[0].equals("UserFile")) {
city = parts[1];
}
if(parts[0].equals("UserLogs")) {
ip = parts[1];
} else {
ip = "IP Address not found";
}
}
context.write(key, new Text(city + "\t" + ip));
}
}

驱动类:

public class MainClass {
public static void main(String[] args)throws IOException, InterruptedException, ClassNotFoundException {
Job job = new Job();
job.setJarByClass(MainClass.class);
job.setOutputKeyClass(Text.class);
job.setReducerClass(ReducerClass.class);
job.setOutputValueClass(Text.class);
job.setInputFormatClass(TextInputFormat.class);
job.setOutputFormatClass(TextOutputFormat.class);
MultipleInputs.addInputPath(job, new Path(args[0]), TextInputFormat.class, UserMap.class);
MultipleInputs.addInputPath(job, new Path(args[1]), TextInputFormat.class, UserLogs.class);
FileOutputFormat.setOutputPath(job, new Path(args[2]));

System.exit(job.waitForCompletion(true)?0:1);
}
}

输出应该是这样的:

Bobby   Amsterdam 99.12.11.222
Sunny Rotterdam 12.23.14.421
Klopp Liverpool 88.33.44.555
Steven Liverpool 99.55.66.777
Jamie Liverpool 88.99.33.232
Suarez Barcelona 77.55.66.444

相反,我得到这样的输出:

Bobby   Amsterdam       IP Address not found
Jamie Liverpool 88.99.33.232
Klopp Liverpool IP Address not found
Macca Liverpool IP Address not found
Messi Barcelona IP Address not found
Neymar brazil IP Address not found
Pique Barcelona IP Address not found
Steven Liverpool 99.55.66.777
Suarez Barcelona IP Address not found
Sunny Rotterdam 12.23.14.421

我不明白我在这里犯了什么错误。谁能帮我解决这个问题。非常感谢任何形式的帮助。

最佳答案

reducer 中有一个错误,它根据 values 顺序覆盖了 IP 地址。试试这个:

public class ReducerClass extends Reducer<Text, Text, Text, Text>{
@Override
public void reduce(Text key, Iterable<Text> values, Context context) throws IOException, InterruptedException {
String city = null;
String ip = null;
for(Text t: values) {
String[] parts = t.toString().split("\t");
if(parts[0].equals("UserFile")) {
city = parts[1];
} else if(parts[0].equals("UserLogs")) {
ip = parts[1];
}
}
if (ip != null && city != null) {
context.write(key, new Text(city + "\t" + ip));
}
}
}

关于hadoop - 无法识别我的 Reducer 连接代码中的错误,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/40440242/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com