gpt4 book ai didi

hadoop 集群未运行 map reduce 作业 - 调度程序问题

转载 作者:可可西里 更新时间:2023-11-01 15:52:37 27 4
gpt4 key购买 nike

(这是对我之前就此事提出的问题进行的讨论的后续行动)

我按照 these 设置了一个小型 Hadoop 集群说明,但使用 Hadoop 版本 2.7.4。集群似乎工作正常,但我无法运行 mapreduce 作业。特别是,在尝试以下操作时

$HADOOP_HOME/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.4.jar randomwriter outdenter code here

作业打印

17/11/27 16:35:21 INFO client.RMProxy: Connecting to ResourceManager at 
ec2-yyy.eu-central-
1.compute.amazonaws.com/xxx:8032
Running 0 maps.

Job started: Mon Nov 27 16:35:22 UTC 2017

17/11/27 16:35:22 INFO client.RMProxy: Connecting to ResourceManager at
ec2-yyy.eu-central-
1.compute.amazonaws.com/xxx:8032


17/11/27 16:35:22 INFO mapreduce.JobSubmitter: number of splits:0

17/11/27 16:35:22 INFO mapreduce.JobSubmitter: Submitting tokens for
job: job_1511799491035_0006

17/11/27 16:35:22 INFO impl.YarnClientImpl: Submitted application
application_1511799491035_0006

17/11/27 16:35:22 INFO mapreduce.Job: The url to track the job:
http://ec2-yyy.eu-central-
1.compute.amazonaws.com:8088/proxy/application_1511799491035_0006/

17/11/27 16:35:22 INFO mapreduce.Job: Running job:
job_1511799491035_0006

永远不会超过这个状态。

在工作跟踪器中,它说

ACCEPTED: waiting for AM container to be allocated, launched and 
register with RM.

然后我查看了我发现的日志文件

2017-11-27 13:50:29,202 INFO org.apache.hadoop.conf.Configuration: found resource capacity-scheduler.xml at file:/usr/local/hadoop/etc/hadoop/capacity-scheduler.xml
2017-11-27 13:50:29,252 INFO org.apache.hadoop.yarn.server.resourcemanager.scheduler.capacity.CapacitySchedulerConfiguration: max alloc mb per queue for root is undefined
2017-11-27 13:50:29,252 INFO org.apache.hadoop.yarn.server.resourcemanager.scheduler.capacity.CapacitySchedulerConfiguration: max alloc vcore per queue for root is undefined
2017-11-27 13:50:29,256 INFO org.apache.hadoop.yarn.server.resourcemanager.scheduler.capacity.ParentQueue: root, capacity=1.0, asboluteCapacity=1.0, maxCapacity=1.0, asboluteMaxCapacity=1.0, state=RUNNING, acls=ADMINISTER_QUEUE:*SUBMIT_APP:*, labels=*, reservationsContinueLooking=true
2017-11-27 13:50:29,256 INFO org.apache.hadoop.yarn.server.resourcemanager.scheduler.capacity.ParentQueue: Initialized parent-queue root name=root, fullname=root
2017-11-27 13:50:29,265 INFO org.apache.hadoop.yarn.server.resourcemanager.scheduler.capacity.CapacitySchedulerConfiguration: max alloc mb per queue for root.default is undefined
2017-11-27 13:50:29,265 INFO org.apache.hadoop.yarn.server.resourcemanager.scheduler.capacity.CapacitySchedulerConfiguration: max alloc vcore per queue for root.default is undefined

这表明容量调度程序存在问题。文件 capacity-scheduler.xml 如下所示:

<configuration>

<property>
<name>yarn.scheduler.capacity.maximum-applications</name>
<value>10000</value>
<description>
Maximum number of applications that can be pending and running.
</description>
</property>

<property>
<name>yarn.scheduler.capacity.maximum-am-resource-percent</name>
<value>0.1</value>
<description>
Maximum percent of resources in the cluster which can be used to run
application masters i.e. controls number of concurrent running
applications.
</description>
</property>

<property>
<name>yarn.scheduler.capacity.resource-calculator</name>
<value>org.apache.hadoop.yarn.util.resource.DefaultResourceCalculator</value>
<description>
The ResourceCalculator implementation to be used to compare
Resources in the scheduler.
The default i.e. DefaultResourceCalculator only uses Memory while
DominantResourceCalculator uses dominant-resource to compare
multi-dimensional resources such as Memory, CPU etc.
</description>
</property>

<property>
<name>yarn.scheduler.capacity.root.queues</name>
<value>default</value>
<description>
The queues at the this level (root is the root queue).
</description>
</property>

<property>
<name>yarn.scheduler.capacity.root.default.capacity</name>
<value>100</value>
<description>Default queue target capacity.</description>
</property>

<property>
<name>yarn.scheduler.capacity.root.default.user-limit-factor</name>
<value>1</value>
<description>
Default queue user limit a percentage from 0.0 to 1.0.
</description>
</property>

<property>
<name>yarn.scheduler.capacity.root.default.maximum-capacity</name>
<value>100</value>
<description>
The maximum capacity of the default queue.
</description>
</property>

<property>
<name>yarn.scheduler.capacity.root.default.state</name>
<value>RUNNING</value>
<description>
The state of the default queue. State can be one of RUNNING or STOPPED.
</description>
</property>

<property>
<name>yarn.scheduler.capacity.root.default.acl_submit_applications</name>
<value>*</value>
<description>
The ACL of who can submit jobs to the default queue.
</description>
</property>

<property>
<name>yarn.scheduler.capacity.root.default.acl_administer_queue</name>
<value>*</value>
<description>
The ACL of who can administer jobs on the default queue.
</description>
</property>

<property>
<name>yarn.scheduler.capacity.node-locality-delay</name>
<value>40</value>
<description>
Number of missed scheduling opportunities after which the CapacityScheduler
attempts to schedule rack-local containers.
Typically this should be set to number of nodes in the cluster, By default is setting
approximately number of nodes in one rack which is 40.
</description>
</property>

<property>
<name>yarn.scheduler.capacity.queue-mappings</name>
<value></value>
<description>
A list of mappings that will be used to assign jobs to queues
The syntax for this list is [u|g]:[name]:[queue_name][,next mapping]*
Typically this list will be used to map users to queues,
for example, u:%user:%user maps all users to queues with the same name
as the user.
</description>
</property>

<property>
<name>yarn.scheduler.capacity.queue-mappings-override.enable</name>
<value>false</value>
<description>
If a queue mapping is present, will it override the value specified
by the user? This can be used by administrators to place jobs in queues
that are different than the one specified by the user.
The default is false.
</description>
</property>

</configuration>

我将不胜感激有关如何处理此问题的任何提示?

谢谢c14

最佳答案

集群配置的一切都很好,但是当涉及到作业执行时,t2.micro 实例提供的 RAM 不足以运行 MapReduce 作业,因此最好使用更大的实例来创建集群和执行作业

关于hadoop 集群未运行 map reduce 作业 - 调度程序问题,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/47535019/

27 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com