gpt4 book ai didi

java - 在 MapReduce 程序中,reducer 没有被 Driver 调用

转载 作者:可可西里 更新时间:2023-11-01 15:28:59 25 4
gpt4 key购买 nike

我根据map reduce编程模型编写了这个程序,Driver代码如下我的司机类(class)

public class MRDriver extends Configured implements Tool
{
@Override
public int run(String[] strings) throws Exception {
if(strings.length != 2)
{
System.err.println("usage : <inputlocation> <inputlocation> <outputlocation>");
System.exit(0);
}
Job job = new Job(getConf(), "multiple files");
job.setJarByClass(MRDriver.class);
job.setMapperClass(MRMapper.class);
job.setReducerClass(MRReducer.class);
job.setInputFormatClass(TextInputFormat.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(Text.class);
FileInputFormat.addInputPath(job, new Path(strings[0]));
FileOutputFormat.setOutputPath(job, new Path(strings[1]));


return job.waitForCompletion(true) ? 0 : 1;

//throw new UnsupportedOperationException("Not supported yet."); //To change body of generated methods, choose Tools | Templates.
}
public static void main(String[] args) throws Exception
{
Configuration conf = new Configuration();
System.exit(ToolRunner.run(conf, new MRDriver(), args));
}
}

我的 MAPPER 类

class MRMapper extends Mapper<LongWritable, Text, Text, Text>
{
@Override
public void map(LongWritable key, Text value, Context context)
{
try
{
StringTokenizer iterator;
String idsimval = null;
iterator = new StringTokenizer(value.toString(), "\t");
String id = iterator.nextToken();
String sentival = iterator.nextToken();
if(iterator.hasMoreTokens())
idsimval = iterator.nextToken();
context.write(new Text("unique"), new Text(id + "_" + sentival + "_" + idsimval));

} catch (IOException | InterruptedException e)
{
System.out.println(e);
}
}

我的 reducer 类

class MRReducer extends Reducer<Text, Text, Text, Text> {

String[] records;
HashMap<Long, String> sentiMap = new HashMap<>();
HashMap<Long, String> cosiMap = new HashMap<>();
private String leftIdStr;
private ArrayList<String> rightIDList, rightSimValList, matchingSimValList, matchingIDList;
private double leftVal;
private double rightVal;
private double currDiff;
private double prevDiff;
private int finalIndex;
Context newContext;
private int i;

public void reducer(Text key, Iterable<Text> value, Context context) throws IOException, InterruptedException {
for (Text string : value) {
records = string.toString().split("_");
sentiMap.put(Long.parseLong(records[0]), records[1]);
if (records[2] != null) {
cosiMap.put(Long.parseLong(records[0]), records[2]);
}
if(++i == 2588)
{
newContext = context;
newfun();
}
context.write(new Text("hello"), new Text("hii"));

}
context.write(new Text("hello"), new Text("hii"));
}
void newfun() throws IOException, InterruptedException
{
for (HashMap.Entry<Long, String> firstEntry : cosiMap.entrySet()) {
try {
leftIdStr = firstEntry.getKey().toString();
rightIDList = new ArrayList<>();
rightSimValList = new ArrayList<>();
matchingSimValList = new ArrayList<>();
matchingIDList = new ArrayList<>();
for (String strTmp : firstEntry.getValue().split(" ")) {
rightIDList.add(strTmp.substring(0, 18));
rightSimValList.add(strTmp.substring(19));
}
String tmp = sentiMap.get(Long.parseLong(leftIdStr));
if ("NULL".equals(tmp)) {
leftVal = Double.parseDouble("0");
} else {
leftVal = Double.parseDouble(tmp);
}
tmp = sentiMap.get(Long.parseLong(rightIDList.get(0)));
if ("NULL".equals(tmp)) {
rightVal = Double.parseDouble("0");
} else {
rightVal = Double.parseDouble(tmp);
}
prevDiff = Math.abs(leftVal - rightVal);
int oldIndex = 0;
for (String s : rightIDList) {
try {
oldIndex++;
tmp = sentiMap.get(Long.parseLong(s));
if ("NULL".equals(tmp)) {
rightVal = Double.parseDouble("0");
} else {
rightVal = Double.parseDouble(tmp);
}
currDiff = Math.abs(leftVal - rightVal);
if (prevDiff > currDiff) {
prevDiff = currDiff;
}
} catch (Exception e) {
}

}
oldIndex = 0;
for (String s : rightIDList) {
tmp = sentiMap.get(Long.parseLong(s));
if ("NULL".equals(tmp)) {
rightVal = Double.parseDouble("0");
} else {
rightVal = Double.parseDouble(tmp);
}
currDiff = Math.abs(leftVal - rightVal);
if (Objects.equals(prevDiff, currDiff)) {
matchingSimValList.add(rightSimValList.get(oldIndex));
matchingIDList.add(rightIDList.get(oldIndex));
}
oldIndex++;
}
finalIndex = rightSimValList.indexOf(Collections.max(matchingSimValList));
newContext.write(new Text(leftIdStr), new Text(" " + rightIDList.get(finalIndex) + ":" + rightSimValList.get(finalIndex)));
} catch (NumberFormatException nfe) {

}

}
}
}

问题是什么,属于map reduce程序还是hadoop系统配置?每当我运行这个程序时,它只会将映射器输出写入 hdfs。

最佳答案

在您的 Reducer 类中,您必须覆盖 reduce 方法。您正在声明一个 reducer 方法,这是不正确的。

尝试在 Reducer 类中修改您的函数:

    @Override
public void reduce(Text key, Iterable<Text> value, Context context) throws IOException, InterruptedException {

关于java - 在 MapReduce 程序中,reducer 没有被 Driver 调用,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/38326939/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com