- android - RelativeLayout 背景可绘制重叠内容
- android - 如何链接 cpufeatures lib 以获取 native android 库?
- java - OnItemClickListener 不起作用,但 OnLongItemClickListener 在自定义 ListView 中起作用
- java - Android 文件转字符串
我有一个 spark 应用程序。我使用 saveAsNewAPIHadoopDataset
在 hdfs 上存储一个 rdd,利用 AvroKeyOutputFormat
。
对于大型 RDD,有时我会收到太多 ClosedChannelException
,以至于应用程序最终中止。
我在某处读到设置 hadoopConf.set("fs.hdfs.impl.disable.cache", "false");
有帮助。
以下是我如何保存我的 rdd:
hadoopConf.set("fs.hdfs.impl.disable.cache", "false");
final Job job = Job.getInstance(hadoopConf);
FileOutputFormat.setOutputPath(job, outPutPath);
AvroJob.setOutputKeySchema(job, MyClass.SCHEMA$);
job.setOutputFormatClass(AvroKeyOutputFormat.class);
rdd
.mapToPair(new PreparePairForDatnum())
.saveAsNewAPIHadoopDataset(job.getConfiguration());
这是堆栈跟踪:
java.nio.channels.ClosedChannelException
at org.apache.hadoop.hdfs.DFSOutputStream.checkClosed(DFSOutputStream.java:1765)
at org.apache.hadoop.fs.FSOutputSummer.write(FSOutputSummer.java:108)
at org.apache.hadoop.fs.FSDataOutputStream$PositionCache.write(FSDataOutputStream.java:58)
at java.io.DataOutputStream.write(DataOutputStream.java:107)
at org.apache.avro.file.DataFileWriter$BufferedFileOutputStream$PositionFilter.write(DataFileWriter.java:458)
at java.io.BufferedOutputStream.flushBuffer(BufferedOutputStream.java:82)
at java.io.BufferedOutputStream.write(BufferedOutputStream.java:121)
at org.apache.avro.io.BufferedBinaryEncoder$OutputStreamSink.innerWrite(BufferedBinaryEncoder.java:216)
at org.apache.avro.io.BufferedBinaryEncoder.writeFixed(BufferedBinaryEncoder.java:150)
at org.apache.avro.file.DataFileStream$DataBlock.writeBlockTo(DataFileStream.java:369)
at org.apache.avro.file.DataFileWriter.writeBlock(DataFileWriter.java:395)
at org.apache.avro.file.DataFileWriter.writeIfBlockFull(DataFileWriter.java:340)
at org.apache.avro.file.DataFileWriter.append(DataFileWriter.java:311)
at org.apache.avro.mapreduce.AvroKeyRecordWriter.write(AvroKeyRecordWriter.java:77)
at org.apache.avro.mapreduce.AvroKeyRecordWriter.write(AvroKeyRecordWriter.java:39)
at org.apache.spark.rdd.PairRDDFunctions$$anonfun$saveAsNewAPIHadoopDataset$1$$anonfun$12$$anonfun$apply$4.apply$mcV$sp(PairRDDFunctions.scala:1036)
at org.apache.spark.rdd.PairRDDFunctions$$anonfun$saveAsNewAPIHadoopDataset$1$$anonfun$12$$anonfun$apply$4.apply(PairRDDFunctions.scala:1034)
at org.apache.spark.rdd.PairRDDFunctions$$anonfun$saveAsNewAPIHadoopDataset$1$$anonfun$12$$anonfun$apply$4.apply(PairRDDFunctions.scala:1034)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1206)
at org.apache.spark.rdd.PairRDDFunctions$$anonfun$saveAsNewAPIHadoopDataset$1$$anonfun$12.apply(PairRDDFunctions.scala:1042)
at org.apache.spark.rdd.PairRDDFunctions$$anonfun$saveAsNewAPIHadoopDataset$1$$anonfun$12.apply(PairRDDFunctions.scala:1014)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66)
at org.apache.spark.scheduler.Task.run(Task.scala:88)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
Suppressed: java.nio.channels.ClosedChannelException
at org.apache.hadoop.hdfs.DFSOutputStream.checkClosed(DFSOutputStream.java:1765)
at org.apache.hadoop.fs.FSOutputSummer.write(FSOutputSummer.java:108)
at org.apache.hadoop.fs.FSDataOutputStream$PositionCache.write(FSDataOutputStream.java:58)
at java.io.DataOutputStream.write(DataOutputStream.java:107)
at org.apache.avro.file.DataFileWriter$BufferedFileOutputStream$PositionFilter.write(DataFileWriter.java:458)
at java.io.BufferedOutputStream.flushBuffer(BufferedOutputStream.java:82)
at java.io.BufferedOutputStream.write(BufferedOutputStream.java:121)
at org.apache.avro.io.BufferedBinaryEncoder$OutputStreamSink.innerWrite(BufferedBinaryEncoder.java:216)
at org.apache.avro.io.BufferedBinaryEncoder.writeFixed(BufferedBinaryEncoder.java:150)
at org.apache.avro.file.DataFileStream$DataBlock.writeBlockTo(DataFileStream.java:369)
at org.apache.avro.file.DataFileWriter.writeBlock(DataFileWriter.java:395)
at org.apache.avro.file.DataFileWriter.sync(DataFileWriter.java:413)
at org.apache.avro.file.DataFileWriter.flush(DataFileWriter.java:422)
at org.apache.avro.file.DataFileWriter.close(DataFileWriter.java:445)
at org.apache.avro.mapreduce.AvroKeyRecordWriter.close(AvroKeyRecordWriter.java:83)
at org.apache.spark.rdd.PairRDDFunctions$$anonfun$saveAsNewAPIHadoopDataset$1$$anonfun$12$$anonfun$apply$5.apply$mcV$sp(PairRDDFunctions.scala:1043)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1215)
... 8 more
最佳答案
执行者被杀时可能会发生。看看你的日志是这样的:
2016-07-20 22:00:42,976 | WARN | org.apache.spark.scheduler.cluster.YarnSchedulerBackend$YarnSchedulerEndpoint | Container container_e10838_1468831508103_1724_01_055482 on host: hostName was preempted.
2016-07-20 22:00:42,977 | ERROR | org.apache.spark.scheduler.cluster.YarnClusterScheduler | Lost executor 6 on hostName: Container container_e10838_1468831508103_1724_01_055482 on host: hostName was preempted.
如果你找到了,那么你的任务的执行者就被 yarn application master 抢占了。换句话说,他被杀死并获得了另一个运行队列。关于抢占和 yarn 调度可以引用here和 here .
关于java - 由于 ClosedChannelException (DFSOutputStream.checkClosed) 而导致的 Spark 作业失败,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/37733004/
目前正在学习 Spark 的类(class)并了解到执行者的定义: Each executor will hold a chunk of the data to be processed. Thisc
阅读了有关 http://spark.apache.org/docs/0.8.0/cluster-overview.html 的一些文档后,我有一些问题想要澄清。 以 Spark 为例: JavaSp
Spark核心中的调度器与以下Spark Stack(来自Learning Spark:Lightning-Fast Big Data Analysis一书)中的Standalone Schedule
我想在 spark-submit 或 start 处设置 spark.eventLog.enabled 和 spark.eventLog.dir -all level -- 不要求在 scala/ja
我有来自 SQL Server 的数据,需要在 Apache Spark (Databricks) 中进行操作。 在 SQL Server 中,此表的三个键列使用区分大小写的 COLLATION 选项
所有这些有什么区别和用途? spark.local.ip spark.driver.host spark.driver.bind地址 spark.driver.hostname 如何将机器修复为 Sp
我有大约 10 个 Spark 作业,每个作业都会进行一些转换并将数据加载到数据库中。必须为每个作业单独打开和关闭 Spark session ,每次初始化都会耗费时间。 是否可以只创建一次 Spar
/Downloads/spark-3.0.1-bin-hadoop2.7/bin$ ./spark-shell 20/09/23 10:58:45 WARN Utils: Your hostname,
我是 Spark 的完全新手,并且刚刚开始对此进行更多探索。我选择了更长的路径,不使用任何 CDH 发行版安装 hadoop,并且我从 Apache 网站安装了 Hadoop 并自己设置配置文件以了解
TL; 博士 Spark UI 显示的内核和内存数量与我在使用 spark-submit 时要求的数量不同 更多细节: 我在独立模式下运行 Spark 1.6。 当我运行 spark-submit 时
spark-submit 上的文档说明如下: The spark-submit script in Spark’s bin directory is used to launch applicatio
关闭。这个问题是opinion-based .它目前不接受答案。 想改善这个问题吗?更新问题,以便可以通过 editing this post 用事实和引文回答问题. 6 个月前关闭。 Improve
我想了解接收器如何在 Spark Streaming 中工作。根据我的理解,将有一个接收器任务在执行器中运行,用于收集数据并保存为 RDD。当调用 start() 时,接收器开始读取。需要澄清以下内容
有没有办法在不同线程中使用相同的 spark 上下文并行运行多个 spark 作业? 我尝试使用 Vertx 3,但看起来每个作业都在排队并按顺序启动。 如何让它在相同的 spark 上下文中同时运行
我们有一个 Spark 流应用程序,这是一项长期运行的任务。事件日志指向 hdfs 位置 hdfs://spark-history,当我们开始流式传输应用程序时正在其中创建 application_X
我们正在尝试找到一种加载 Spark (2.x) ML 训练模型的方法,以便根据请求(通过 REST 接口(interface))我们可以查询它并获得预测,例如http://predictor.com
Spark newb 问题:我在 spark-sql 中进行完全相同的 Spark SQL 查询并在 spark-shell . spark-shell版本大约需要 10 秒,而 spark-sql版
我正在使用 Spark 流。根据 Spark 编程指南(参见 http://spark.apache.org/docs/latest/programming-guide.html#accumulato
我正在使用 CDH 5.2。我可以使用 spark-shell 运行命令。 如何运行包含spark命令的文件(file.spark)。 有没有办法在不使用 sbt 的情况下在 CDH 5.2 中运行/
我使用 Elasticsearch 已经有一段时间了,但使用 Cassandra 的经验很少。 现在,我有一个项目想要使用 Spark 来处理数据,但我需要决定是否应该使用 Cassandra 还是
我是一名优秀的程序员,十分优秀!