- android - RelativeLayout 背景可绘制重叠内容
- android - 如何链接 cpufeatures lib 以获取 native android 库?
- java - OnItemClickListener 不起作用,但 OnLongItemClickListener 在自定义 ListView 中起作用
- java - Android 文件转字符串
我想在CPU上模拟CUDA双线性插值的行为,但发现返回值tex2D
好像不适合bilinear formula .
我猜是从 float
转换插值系数至 9
-bit 定点格式与 8
小数位 [1]导致不同的值。
根据换算公式[2, line 106] ,转换的结果将与输入 float
相同当系数为 1/2^n
, 与 n=0,1,..., 8
,但我仍然(并非总是)收到奇怪的值。
下面我报告一个奇怪值的例子。在这种情况下,奇怪的值总是在 时发生。 id = 2*n+1
,谁能告诉我为什么?
源数组:
Src[0][0] = 38;
Src[1][0] = 39;
Src[0][1] = 118;
Src[1][1] = 13;
static texture<float4, 2, cudaReadModeElementType> texElnt;
texElnt.addressMode[0] = cudaAddressModeClamp;
texElnt.addressMode[1] = cudaAddressModeClamp;
texElnt.filterMode = cudaFilterModeLinear;
texElnt.normalized = false;
static __global__ void kernel_texElnt(float* pdata, int w, int h, int c, float stride/*0.03125f*/) {
const int gx = blockIdx.x*blockDim.x + threadIdx.x;
const int gy = blockIdx.y*blockDim.y + threadIdx.y;
const int gw = gridDim.x * blockDim.x;
const int gid = gy*gw + gx;
if (gx >= w || gy >= h) {
return;
}
float2 pnt;
pnt.x = (gx)*(stride)/*1/32*/;
pnt.y = 0.0625f/*1/16*/;
float4 result = tex2D( texElnt, pnt.x + 0.5, pnt.y + 0.5f);
pdata[gid*3 + 0] = pnt.x;
pdata[gid*3 + 1] = pnt.y;
pdata[gid*3 + 2] = result.x;
}
id pnt.x pnt.y tex2D
0 0.00000 0.0625 43.0000000
1 0.03125 0.0625 42.6171875
2 0.06250 0.0625 42.6484375
3 0.09375 0.0625 42.2656250
4 0.12500 0.0625 42.2968750
5 0.15625 0.0625 41.9140625
6 0.18750 0.0625 41.9453125
7 0.21875 0.0625 41.5625000
8 0.25000 0.0625 41.5937500
9 0.28125 0.0625 41.2109375
0 0.31250 0.0625 41.2421875
10 0.34375 0.0625 40.8593750
11 0.37500 0.0625 40.8906250
12 0.40625 0.0625 40.5078125
13 0.43750 0.0625 40.5390625
14 0.46875 0.0625 40.1562500
15 0.50000 0.0625 40.1875000
16 0.53125 0.0625 39.8046875
17 0.56250 0.0625 39.8359375
18 0.59375 0.0625 39.4531250
19 0.62500 0.0625 39.4843750
20 0.65625 0.0625 39.1015625
21 0.68750 0.0625 39.1328125
22 0.71875 0.0625 38.7500000
23 0.75000 0.0625 38.7812500
24 0.78125 0.0625 38.3984375
25 0.81250 0.0625 38.4296875
26 0.84375 0.0625 38.0468750
27 0.87500 0.0625 38.0781250
28 0.90625 0.0625 37.6953125
29 0.93750 0.0625 37.7265625
30 0.96875 0.0625 37.3437500
31 1.00000 0.0625 37.3750000
// convert coefficient ((1-α)*(1-β)), (α*(1-β)), ((1-α)*β), (α*β) to fixed point format
id pnt.x pnt.y tex2D
0 0.00000 0.0625 43.00000000
1 0.03125 0.0625 43.23046875
2 0.06250 0.0625 42.64843750
3 0.09375 0.0625 42.87890625
4 0.12500 0.0625 42.29687500
5 0.15625 0.0625 42.52734375
6 0.18750 0.0625 41.94531250
7 0.21875 0.0625 42.17578125
8 0.25000 0.0625 41.59375000
9 0.28125 0.0625 41.82421875
0 0.31250 0.0625 41.24218750
10 0.34375 0.0625 41.47265625
11 0.37500 0.0625 40.89062500
12 0.40625 0.0625 41.12109375
13 0.43750 0.0625 40.53906250
14 0.46875 0.0625 40.76953125
15 0.50000 0.0625 40.18750000
16 0.53125 0.0625 40.41796875
17 0.56250 0.0625 39.83593750
18 0.59375 0.0625 40.06640625
19 0.62500 0.0625 39.48437500
20 0.65625 0.0625 39.71484375
21 0.68750 0.0625 39.13281250
22 0.71875 0.0625 39.36328125
23 0.75000 0.0625 38.78125000
24 0.78125 0.0625 39.01171875
25 0.81250 0.0625 38.42968750
26 0.84375 0.0625 38.66015625
27 0.87500 0.0625 38.07812500
28 0.90625 0.0625 38.30859375
29 0.93750 0.0625 37.72656250
30 0.96875 0.0625 37.95703125
31 1.00000 0.0625 37.37500000
D:\
中得到两个文件.
tex2D
的规范
“当 alpha
乘以 beta
小于 0.00390625
时,tex2D
的返回值与双线性插值公式不匹配”
最佳答案
已经为这个问题提供了令人满意的答案,所以现在我只想提供一个关于双线性插值的有用信息概要,它如何在 C++ 中实现以及它可以在 CUDA 中完成的不同方式。
双线性插值背后的数学
假设原函数T(x, y)
在笛卡尔规则网格点采样 (i, j)
与 0 <= i < M1
, 0 <= j < M2
和 i
和 j
整数。对于 y
的每个值,可以先用0 <= a < 1
表示任意点 i + a
包含在i
之间和 i + 1
.然后,沿 y = j
进行线性插值轴(平行于 x
轴)在该点可以执行获得
哪里r(x,y)
是对 T(x,y)
的样本进行插值的函数.对于行 y = j + 1
也可以这样做。 , 获得
现在,对于每个 i + a
,沿 y
的插值可以在样本上执行轴 r(i+a,j)
和 r(i+a,j+1)
.因此,如果使用 0 <= b < 1
表示任意点 j + b
位于 j
之间和 j + 1
,然后沿 x = i + a
进行线性插值轴(平行于 y
轴)可以计算出来,所以得到最终结果
注意i
之间的关系, j
, a
, b
, x
和 y
以下是
C/C++ 实现
让我强调一下,这个实现以及下面的 CUDA 实现假设,正如开头所做的那样,T
的样本位于点的笛卡尔规则网格上 (i, j)
与 0 <= i < M1
, 0 <= j < M2
和 i
和 j
整数(单位间距)。此外,该例程以单精度、复杂 ( float2
) 算术提供,但可以轻松转换为其他感兴趣的算术。
void bilinear_interpolation_function_CPU(float2 * __restrict__ h_result, float2 * __restrict__ h_data,
float * __restrict__ h_xout, float * __restrict__ h_yout,
const int M1, const int M2, const int N1, const int N2){
float2 result_temp1, result_temp2;
for(int k=0; k<N2; k++){
for(int l=0; l<N1; l++){
const int ind_x = floor(h_xout[k*N1+l]);
const float a = h_xout[k*N1+l]-ind_x;
const int ind_y = floor(h_yout[k*N1+l]);
const float b = h_yout[k*N1+l]-ind_y;
float2 h00, h01, h10, h11;
if (((ind_x) < M1)&&((ind_y) < M2)) h00 = h_data[ind_y*M1+ind_x]; else h00 = make_float2(0.f, 0.f);
if (((ind_x+1) < M1)&&((ind_y) < M2)) h10 = h_data[ind_y*M1+ind_x+1]; else h10 = make_float2(0.f, 0.f);
if (((ind_x) < M1)&&((ind_y+1) < M2)) h01 = h_data[(ind_y+1)*M1+ind_x]; else h01 = make_float2(0.f, 0.f);
if (((ind_x+1) < M1)&&((ind_y+1) < M2)) h11 = h_data[(ind_y+1)*M1+ind_x+1]; else h11 = make_float2(0.f, 0.f);
result_temp1.x = a * h10.x + (-h00.x * a + h00.x);
result_temp1.y = a * h10.y + (-h00.y * a + h00.y);
result_temp2.x = a * h11.x + (-h01.x * a + h01.x);
result_temp2.y = a * h11.y + (-h01.y * a + h01.y);
h_result[k*N1+l].x = b * result_temp2.x + (-result_temp1.x * b + result_temp1.x);
h_result[k*N1+l].y = b * result_temp2.y + (-result_temp1.y * b + result_temp1.y);
}
}
}
if/else
上面代码中的语句只是边界检查。如果样本落在
[0, M1-1] x [0, M2-1]
之外,则设置为
0
.
__global__ void bilinear_interpolation_kernel_GPU(float2 * __restrict__ d_result, const float2 * __restrict__ d_data,
const float * __restrict__ d_xout, const float * __restrict__ d_yout,
const int M1, const int M2, const int N1, const int N2)
{
const int l = threadIdx.x + blockDim.x * blockIdx.x;
const int k = threadIdx.y + blockDim.y * blockIdx.y;
if ((l<N1)&&(k<N2)) {
float2 result_temp1, result_temp2;
const int ind_x = floor(d_xout[k*N1+l]);
const float a = d_xout[k*N1+l]-ind_x;
const int ind_y = floor(d_yout[k*N1+l]);
const float b = d_yout[k*N1+l]-ind_y;
float2 d00, d01, d10, d11;
if (((ind_x) < M1)&&((ind_y) < M2)) d00 = d_data[ind_y*M1+ind_x]; else d00 = make_float2(0.f, 0.f);
if (((ind_x+1) < M1)&&((ind_y) < M2)) d10 = d_data[ind_y*M1+ind_x+1]; else d10 = make_float2(0.f, 0.f);
if (((ind_x) < M1)&&((ind_y+1) < M2)) d01 = d_data[(ind_y+1)*M1+ind_x]; else d01 = make_float2(0.f, 0.f);
if (((ind_x+1) < M1)&&((ind_y+1) < M2)) d11 = d_data[(ind_y+1)*M1+ind_x+1]; else d11 = make_float2(0.f, 0.f);
result_temp1.x = a * d10.x + (-d00.x * a + d00.x);
result_temp1.y = a * d10.y + (-d00.y * a + d00.y);
result_temp2.x = a * d11.x + (-d01.x * a + d01.x);
result_temp2.y = a * d11.y + (-d01.y * a + d01.y);
d_result[k*N1+l].x = b * result_temp2.x + (-result_temp1.x * b + result_temp1.x);
d_result[k*N1+l].y = b * result_temp2.y + (-result_temp1.y * b + result_temp1.y);
}
}
T[i,j]
被访问为
tex2D(d_texture_fetch_float,ind_x,ind_y);
ind_x = i
和
ind_y = j
和
d_texture_fetch_float
被假定为全局范围变量)而不是
d_data[ind_y*M1+ind_x];
__global__ void bilinear_interpolation_kernel_GPU_texture_fetch(float2 * __restrict__ d_result,
const float * __restrict__ d_xout, const float * __restrict__ d_yout,
const int M1, const int M2, const int N1, const int N2)
{
const int l = threadIdx.x + blockDim.x * blockIdx.x;
const int k = threadIdx.y + blockDim.y * blockIdx.y;
if ((l<N1)&&(k<N2)) {
float2 result_temp1, result_temp2;
const int ind_x = floor(d_xout[k*N1+l]);
const float a = d_xout[k*N1+l]-ind_x;
const int ind_y = floor(d_yout[k*N1+l]);
const float b = d_yout[k*N1+l]-ind_y;
const float2 d00 = tex2D(d_texture_fetch_float,ind_x,ind_y);
const float2 d10 = tex2D(d_texture_fetch_float,ind_x+1,ind_y);
const float2 d11 = tex2D(d_texture_fetch_float,ind_x+1,ind_y+1);
const float2 d01 = tex2D(d_texture_fetch_float,ind_x,ind_y+1);
result_temp1.x = a * d10.x + (-d00.x * a + d00.x);
result_temp1.y = a * d10.y + (-d00.y * a + d00.y);
result_temp2.x = a * d11.x + (-d01.x * a + d01.x);
result_temp2.y = a * d11.y + (-d01.y * a + d01.y);
d_result[k*N1+l].x = b * result_temp2.x + (-result_temp1.x * b + result_temp1.x);
d_result[k*N1+l].y = b * result_temp2.y + (-result_temp1.y * b + result_temp1.y);
}
}
void TextureBindingBilinearFetch(const float2 * __restrict__ data, const int M1, const int M2)
{
size_t pitch;
float* data_d;
gpuErrchk(cudaMallocPitch((void**)&data_d,&pitch, M1 * sizeof(float2), M2));
cudaChannelFormatDesc desc = cudaCreateChannelDesc<float2>();
gpuErrchk(cudaBindTexture2D(0,&d_texture_fetch_float,data_d,&desc,M1,M2,pitch));
d_texture_fetch_float.addressMode[0] = cudaAddressModeClamp;
d_texture_fetch_float.addressMode[1] = cudaAddressModeClamp;
gpuErrchk(cudaMemcpy2D(data_d,pitch,data,sizeof(float2)*M1,sizeof(float2)*M1,M2,cudaMemcpyHostToDevice));
}
if/else
边界检查,因为纹理会自动将落在
[0, M1-1] x [0, M2-1]
之外的样本钳位为零。采样区域,感谢说明
d_texture_fetch_float.addressMode[0] = cudaAddressModeClamp;
d_texture_fetch_float.addressMode[1] = cudaAddressModeClamp;
__global__ void bilinear_interpolation_kernel_GPU_texture_interp(float2 * __restrict__ d_result,
const float * __restrict__ d_xout, const float * __restrict__ d_yout,
const int M1, const int M2, const int N1, const int N2)
{
const int l = threadIdx.x + blockDim.x * blockIdx.x;
const int k = threadIdx.y + blockDim.y * blockIdx.y;
if ((l<N1)&&(k<N2)) { d_result[k*N1+l] = tex2D(d_texture_interp_float, d_xout[k*N1+l] + 0.5f, d_yout[k*N1+l] + 0.5f); }
}
x_B = x - 0.5
和
y_B = y - 0.5
.这解释了
0.5
指令中的偏移量
tex2D(d_texture_interp_float, d_xout[k*N1+l] + 0.5f, d_yout[k*N1+l] + 0.5f)
void TextureBindingBilinearInterp(const float2 * __restrict__ data, const int M1, const int M2)
{
size_t pitch;
float* data_d;
gpuErrchk(cudaMallocPitch((void**)&data_d,&pitch, M1 * sizeof(float2), M2));
cudaChannelFormatDesc desc = cudaCreateChannelDesc<float2>();
gpuErrchk(cudaBindTexture2D(0,&d_texture_interp_float,data_d,&desc,M1,M2,pitch));
d_texture_interp_float.addressMode[0] = cudaAddressModeClamp;
d_texture_interp_float.addressMode[1] = cudaAddressModeClamp;
d_texture_interp_float.filterMode = cudaFilterModeLinear; // --- Enable linear filtering
d_texture_interp_float.normalized = false; // --- Texture coordinates will NOT be normalized
gpuErrchk(cudaMemcpy2D(data_d,pitch,data,sizeof(float2)*M1,sizeof(float2)*M1,M2,cudaMemcpyHostToDevice));
}
a
和
b
存储在
9
-bit 定点格式与
8
小数值位,因此这种方法将非常快,但不如上述方法准确。
关于c++ - C/C++ 和 CUDA 中的双线性插值,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/21128731/
#include using namespace std; class C{ private: int value; public: C(){ value = 0;
这个问题已经有答案了: What is the difference between char a[] = ?string?; and char *p = ?string?;? (8 个回答) 已关闭
关闭。此题需要details or clarity 。目前不接受答案。 想要改进这个问题吗?通过 editing this post 添加详细信息并澄清问题. 已关闭 7 年前。 此帖子已于 8 个月
除了调试之外,是否有任何针对 c、c++ 或 c# 的测试工具,其工作原理类似于将独立函数复制粘贴到某个文本框,然后在其他文本框中输入参数? 最佳答案 也许您会考虑单元测试。我推荐你谷歌测试和谷歌模拟
我想在第二台显示器中移动一个窗口 (HWND)。问题是我尝试了很多方法,例如将分辨率加倍或输入负值,但它永远无法将窗口放在我的第二台显示器上。 关于如何在 C/C++/c# 中执行此操作的任何线索 最
我正在寻找 C/C++/C## 中不同类型 DES 的现有实现。我的运行平台是Windows XP/Vista/7。 我正在尝试编写一个 C# 程序,它将使用 DES 算法进行加密和解密。我需要一些实
很难说出这里要问什么。这个问题模棱两可、含糊不清、不完整、过于宽泛或夸夸其谈,无法以目前的形式得到合理的回答。如需帮助澄清此问题以便重新打开,visit the help center . 关闭 1
有没有办法强制将另一个 窗口置于顶部? 不是应用程序的窗口,而是另一个已经在系统上运行的窗口。 (Windows, C/C++/C#) 最佳答案 SetWindowPos(that_window_ha
假设您可以在 C/C++ 或 Csharp 之间做出选择,并且您打算在 Windows 和 Linux 服务器上运行同一服务器的多个实例,那么构建套接字服务器应用程序的最明智选择是什么? 最佳答案 如
你们能告诉我它们之间的区别吗? 顺便问一下,有什么叫C++库或C库的吗? 最佳答案 C++ 标准库 和 C 标准库 是 C++ 和 C 标准定义的库,提供给 C++ 和 C 程序使用。那是那些词的共同
下面的测试代码,我将输出信息放在注释中。我使用的是 gcc 4.8.5 和 Centos 7.2。 #include #include class C { public:
很难说出这里问的是什么。这个问题是含糊的、模糊的、不完整的、过于宽泛的或修辞性的,无法以目前的形式得到合理的回答。如需帮助澄清此问题以便重新打开它,visit the help center 。 已关
我的客户将使用名为 annoucement 的结构/类与客户通信。我想我会用 C++ 编写服务器。会有很多不同的类继承annoucement。我的问题是通过网络将这些类发送给客户端 我想也许我应该使用
我在 C# 中有以下函数: public Matrix ConcatDescriptors(IList> descriptors) { int cols = descriptors[0].Co
我有一个项目要编写一个函数来对某些数据执行某些操作。我可以用 C/C++ 编写代码,但我不想与雇主共享该函数的代码。相反,我只想让他有权在他自己的代码中调用该函数。是否可以?我想到了这两种方法 - 在
我使用的是编写糟糕的第 3 方 (C/C++) Api。我从托管代码(C++/CLI)中使用它。有时会出现“访问冲突错误”。这使整个应用程序崩溃。我知道我无法处理这些错误[如果指针访问非法内存位置等,
关闭。这个问题不符合Stack Overflow guidelines .它目前不接受答案。 我们不允许提问寻求书籍、工具、软件库等的推荐。您可以编辑问题,以便用事实和引用来回答。 关闭 7 年前。
已关闭。此问题不符合Stack Overflow guidelines 。目前不接受答案。 要求我们推荐或查找工具、库或最喜欢的场外资源的问题对于 Stack Overflow 来说是偏离主题的,因为
我有一些 C 代码,将使用 P/Invoke 从 C# 调用。我正在尝试为这个 C 函数定义一个 C# 等效项。 SomeData* DoSomething(); struct SomeData {
这个问题已经有答案了: Why are these constructs using pre and post-increment undefined behavior? (14 个回答) 已关闭 6
我是一名优秀的程序员,十分优秀!