- android - RelativeLayout 背景可绘制重叠内容
- android - 如何链接 cpufeatures lib 以获取 native android 库?
- java - OnItemClickListener 不起作用,但 OnLongItemClickListener 在自定义 ListView 中起作用
- java - Android 文件转字符串
我对 Map/Reduce 原理和 python mrjob 框架还很陌生,我写了这个示例代码,它工作正常,但我想知道我可以改变它什么以使其“完美”/更高效.
from mrjob.job import MRJob
import operator
import re
# append result from each reducer
output_words = []
class MRSudo(MRJob):
def init_mapper(self):
# move list of tuples across mapper
self.words = []
def mapper(self, _, line):
command = line.split()[-1]
self.words.append((command, 1))
def final_mapper(self):
for word_pair in self.words:
yield word_pair
def reducer(self, command, count):
# append tuples to the list
output_words.append((command, sum(count)))
def final_reducer(self):
# Sort tuples in the list by occurence
map(operator.itemgetter(1), output_words)
sorted_words = sorted(output_words, key=operator.itemgetter(1), reverse=True)
for result in sorted_words:
yield result
def steps(self):
return [self.mr(mapper_init=self.init_mapper,
mapper=self.mapper,
mapper_final=self.final_mapper,
reducer=self.reducer,
reducer_final=self.final_reducer)]
if __name__ == '__main__':
MRSudo.run()
最佳答案
有两种方法可以遵循。
<强>1。改进您的流程
您正在进行分布式字数统计。此操作是代数操作,但您没有利用此属性。
对于你输入的每一个词,你都会向 reducers 发送一条记录。这些字节必须被分区,通过网络发送,然后由 reducer 排序。它既不高效也不可扩展,映射器发送到缩减器的数据量通常是瓶颈。
你应该在你的工作中添加一个组合器。它将做与您当前的 reducer 完全相同的事情。组合器在同一地址空间中的映射器之后运行。这意味着您通过网络发送的数据量不再与输入的字数成线性关系,而是受唯一字数的限制。这通常要低几个数量级。
由于分布式字数统计示例被过度使用,您可以通过搜索“分布式字数统计组合器”轻松找到更多信息。所有代数运算都必须有一个组合器。
<强>2。使用更高效的工具
Mrjob 是快速编写 map reduce 作业的好工具。通常编写 python 作业比编写 Java 作业更快。但是它有运行时成本:
typedbytes
您必须决定是否值得使用常规 API 用 Java 重写您的一些作业。如果您正在编写长期存在的批处理作业,那么投入一些开发时间以降低运行时成本可能是有意义的。
从长远来看,编写 Java 作业通常不会比用 Python 编写长多少。但是您必须进行一些前期投资:使用构建系统创建项目、打包、部署等。使用 MRJob,您只需执行 python 文本文件。
Cloudera 做了一个 benchmark of the Hadoop python frameworks几个月前。 MRJob 比他们的 Java 作业慢得多(5 到 7 倍)。当 typedbytes 可用时,MRJob 的性能应该会提高,但 Java 作业仍将快 2 到 3 倍。
关于python - 如何优化这个MapReduce函数,Python,mrjob,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/15842956/
我正在处理一个处理大量数据的项目,所以我最近发现了 MapReduce,在我进一步深入研究之前,我想确保我的期望是正确的。 与数据的交互将通过 Web 界面进行,因此响应时间在这里至关重要,我认为 1
我正在阅读有关 Hadoop 以及它的容错性的文章。我阅读了 HDFS 并阅读了如何处理主节点和从节点的故障。但是,我找不到任何提及 mapreduce 如何执行容错的文档。特别是,当包含 Job T
我正在尝试在我的 Ubuntu 桌面上使用最新的 Hadoop 版本 2.6.0、Java SDK 1.70 来模拟 Hadoop 环境。我用必要的环境参数配置了 hadoop,它的所有进程都已启动并
就目前情况而言,这个问题不太适合我们的问答形式。我们希望答案得到事实、引用资料或专业知识的支持,但这个问题可能会引发辩论、争论、民意调查或扩展讨论。如果您觉得这个问题可以改进并可能重新开放,visit
我只是想针对我们正在做的一些数据分析工作来评估 HBase。 HBase 将包含我们的事件数据。键为 eventId + 时间。我们想要对日期范围内的几种事件类型 (4-5) 进行分析。事件类型总数约
是否有一种快速算法可以在 MapReduce 框架上运行以从巨大的整数集中查找中位数? 最佳答案 我会这样做。这是顺序快速选择的一种并行版本。 (某些映射/归约工具可能不会让您轻松完成任务...) 从
我正在尝试对大型分布式数据集执行一些数值计算。该算法非常适合 MapReduce 模型,具有以下附加属性:与输入数据相比,映射步骤的输出尺寸较小。数据可以被视为只读,并且静态分布在节点上(故障转移时的
假设我在 RavenDb 中有给定的文档结构 public class Car { public string Manufacturer {get;set;} public int B
我刚刚开始使用 mongo 和 map/reduce,在使用 pymongo 时我遇到了以下错误,而在直接使用 mongo 命令行时我没有得到(我意识到有一个类似的问题这个,但我的似乎更基本)。 我直
*基本上我正在尝试按过去一小时内的得分对对象进行排序。 我正在尝试为我的数据库中的对象生成每小时投票总和。投票嵌入到每个对象中。对象架构如下所示: { _id: ObjectId sc
我们怎样才能使我们的 MapReduce 查询更快? 我们使用五节点 Riak 数据库集群构建了一个应用程序。 我们的数据模型由三个部分组成:比赛、联赛和球队。 比赛包含联赛和球队的链接: 型号 va
关闭。这个问题不符合Stack Overflow guidelines .它目前不接受答案。 我们不允许提问寻求书籍、工具、软件库等的推荐。您可以编辑问题,以便用事实和引用来回答。 关闭 6 年前。
有没有什么方法可以在运行时获取应用程序 ID - 例如 - 带有 yarn 的 wordcount 示例命令? 我希望使用 yarn 从另一个进程启 Action 业命令,并通过 YARN REST
如何在Hadoop Map-reduce程序中使用机器学习算法?我想使用分类算法、决策树、聚类算法。除了 Mahout 之外,请提出一些想法。 最佳答案 您可以编写自己的MapReduce程序,并在m
虽然 MapReduce 可能不是实现图像处理中使用的算法的最佳方式,但出于好奇,如果我作为初学者尝试使用它们,这将是最简单的实现方式。 最佳答案 Hadoop 非常适合处理大量 IO。因此,例如,您
我只是想验证我对这些参数及其关系的理解,如果我错了请通知我。 mapreduce.reduce.shuffle.input.buffer.percent 告诉分配给 reducer 的整个洗牌阶段的内
HBase 需要 mapreduce/yarn,还是只需要 hdfs? 对于 HBase 的基本用法,例如创建表、插入数据、扫描/获取数据,我看不出有任何理由使用 mapreduce/yarn。 请帮
我问了一些关于提高 Hive 查询性能的问题。一些答案与映射器和化简器的数量有关。我尝试了多个映射器和化简器,但在执行过程中没有发现任何差异。不知道为什么,可能是我没有以正确的方式去做,或者我错过了别
我是 mapreduce 和 hadoop 的新手。我阅读了 mapreduce 的示例和设计模式... 好的,我们可以进入正题了。我们正在开发一种软件,可以监控系统并定期捕获它们的 CPU 使用
我正在使用 Microsoft MapReduce SDK 启动仅 Mapper 作业。 调用 hadoop.MapReduceJob.ExecuteJob 立即抛出“响应状态代码不表示成功:404(
我是一名优秀的程序员,十分优秀!