- android - RelativeLayout 背景可绘制重叠内容
- android - 如何链接 cpufeatures lib 以获取 native android 库?
- java - OnItemClickListener 不起作用,但 OnLongItemClickListener 在自定义 ListView 中起作用
- java - Android 文件转字符串
我在 Hive
中有一个空表,我的意思是该表中没有记录。
使用这个空表,我在 pyspark
中创建了一个 data frame
df = sqlContext.table("testing.123_test")
我已将此数据框
注册为
df.registerTempTable('mytempTable')
date=datetime.now().strftime('%Y-%m-%d %H:%M:%S')
在这个表中,我有一个名为 id
的列。
现在我想像下面这样查询临时表
min_id = sqlContext.sql("select nvl(min(id),0) as minval from mytempTable").collect()[0].asDict()['minval']
max_id = sqlContext.sql("select nvl(max(id),0) as maxval from mytempTable").collect()[0].asDict()['maxval']
现在我想将date
、min_id
和max_id
保存到HDFS
中的文件中
我做了如下:
from pyspark.sql import functions as f
(sqlContext.table("myTempTable").select(f.concat_ws(",", f.first(f.lit(date)), f.min("id"), f.max("id"))).coalesce(1).write.format("text").mode("append").save("/tmp/fooo"))
现在,当我检查 HDFS
中的文件时,它显示所有 NULL 值。
HDFS
中的文件输出如下。
NULL,NULL,NULL
我想要的是
Date,0,0
这里的date是当前时间戳
我怎样才能实现我想要的。
最佳答案
这是在 scala 中,但您应该能够轻松地将它复制到 Python 中。你在这里需要的功能是na.fill
功能。并且您必须在以下代码中用 Python 字典替换 Scala map :
这是你的 DF 的样子:
scala> nullDF.show
+----+----+----+
|date| x| y|
+----+----+----+
|null|null|null|
+----+----+----+
// You have already done this using Python's datetime functions
val format = new java.text.SimpleDateFormat("dd/MM/YYYY HH:mm:ss")
val curr_timestamp = format.format(new java.util.Date())
//Use na fill to replace null values
//Column names as keys in map
//And values are what you want to replace NULL with
val df = nullDF.na.fill(scala.collection.immutable.Map(
"date" -> ) ,
"x" -> "0" ,
"y" -> "0" ) )
这应该给你
+-------------------+---+---+
| date| x| y|
+-------------------+---+---+
|10/06/2017 12:10:20| 0| 0|
+-------------------+---+---+
关于hadoop - 从 Pyspark 将文件保存在 HDFS 中,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/44468680/
我在数据框中有一列月份数字,想将其更改为月份名称,所以我使用了这个: df['monthName'] = df['monthNumber'].apply(lambda x: calendar.mont
Pyspark 中是否有一个 input() 函数,我可以通过它获取控制台输入。如果是,请详细说明一下。 如何在 PySpark 中编写以下代码: directory_change = input("
我们正在 pyspark 中构建数据摄取框架,并想知道处理数据类型异常的最佳方法是什么。基本上,我们希望有一个拒绝表来捕获所有未与架构确认的数据。 stringDf = sparkSession.cr
我正在开发基于一组 ORC 文件的 spark 数据框的 sql 查询。程序是这样的: from pyspark.sql import SparkSession spark_session = Spa
我有一个 Pyspark 数据框( 原始数据框 )具有以下数据(所有列都有 字符串 数据类型): id Value 1 103 2
我有一台配置了Redis和Maven的服务器 然后我执行以下sparkSession spark = pyspark .sql .SparkSession .builder .master('loca
从一些简短的测试来看,pyspark 数据帧的列删除功能似乎不区分大小写,例如。 from pyspark.sql import SparkSession from pyspark.sql.funct
我有: +---+-------+-------+ | id| var1| var2| +---+-------+-------+ | a|[1,2,3]|[1,2,3]| | b|[2,
从一些简短的测试来看,pyspark 数据帧的列删除功能似乎不区分大小写,例如。 from pyspark.sql import SparkSession from pyspark.sql.funct
我有一个带有多个数字列的 pyspark DF,我想为每一列根据每个变量计算该行的十分位数或其他分位数等级。 这对 Pandas 来说很简单,因为我们可以使用 qcut 函数为每个变量创建一个新列,如
我有以下使用 pyspark.ml 包进行线性回归的代码。但是,当模型适合时,我在最后一行收到此错误消息: IllegalArgumentException: u'requirement failed
我有一个由 | 分隔的平面文件(管道),没有引号字符。示例数据如下所示: SOME_NUMBER|SOME_MULTILINE_STRING|SOME_STRING 23|multiline text
给定如下模式: root |-- first_name: string |-- last_name: string |-- degrees: array | |-- element: struc
我有一个 pyspark 数据框如下(这只是一个简化的例子,我的实际数据框有数百列): col1,col2,......,col_with_fix_header 1,2,.......,3 4,5,.
我有一个数据框 +------+--------------------+-----------------+---- | id| titulo |tipo | formac
我从 Spark 数组“df_spark”开始: from pyspark.sql import SparkSession import pandas as pd import numpy as np
如何根据行号/行索引值删除 Pyspark 中的行值? 我是 Pyspark(和编码)的新手——我尝试编码一些东西,但它不起作用。 最佳答案 您不能删除特定的列,但您可以使用 filter 或其别名
我有一个循环生成多个因子表的输出并将列名存储在列表中: | id | f_1a | f_2a | |:---|:----:|:-----| |1 |1.2 |0.95 | |2 |0.7
我正在尝试将 hql 脚本转换为 pyspark。我正在努力如何在 groupby 子句之后的聚合中实现 case when 语句的总和。例如。 dataframe1 = dataframe0.gro
我想添加新的 2 列值服务 arr 第一个和第二个值 但我收到错误: Field name should be String Literal, but it's 0; production_targe
我是一名优秀的程序员,十分优秀!