- android - RelativeLayout 背景可绘制重叠内容
- android - 如何链接 cpufeatures lib 以获取 native android 库?
- java - OnItemClickListener 不起作用,但 OnLongItemClickListener 在自定义 ListView 中起作用
- java - Android 文件转字符串
我想知道为什么尝试使用正则表达式从 S3 使用 Spark 读取数据时会有所不同?
我在“测试”桶中有一些文件:
/test/logs/2016-07-01/a.gz
/test/logs/2016-07-02/a.gz
/test/logs/2016-07-03/a.gz
这两部作品:
val logRDD = sqlContext.read.json("s3a://test/logs/2016-07-01/*.gz")
or
val logRDD = sqlContext.read.json("s3n://test/logs/2016-07-01/*.gz")
但是当我这样做的时候:
val logRDD = sqlContext.read.json("s3a://test/logs/2016-07-0*/*.gz")
我明白了:
16/09/29 04:35:13 ERROR ApplicationMaster: User class threw exception: com.amazonaws.services.s3.model.AmazonS3Exception: Status Code: 403, AWS Service: Amazon S3, AWS Request ID: xxxx, AWS Error Code: null, AWS Error Message: Forbidden, S3 Extended Request ID: xxx=
com.amazonaws.services.s3.model.AmazonS3Exception: Status Code: 403, AWS Service: Amazon S3, AWS Request ID: xxx, AWS Error Code: null, AWS Error Message: Forbidden, S3 Extended Request ID: xxx=
at com.amazonaws.http.AmazonHttpClient.handleErrorResponse(AmazonHttpClient.java:798)
at com.amazonaws.http.AmazonHttpClient.executeHelper(AmazonHttpClient.java:421)
at com.amazonaws.http.AmazonHttpClient.execute(AmazonHttpClient.java:232)
at com.amazonaws.services.s3.AmazonS3Client.invoke(AmazonS3Client.java:3528)
at com.amazonaws.services.s3.AmazonS3Client.getObjectMetadata(AmazonS3Client.java:976)
at com.amazonaws.services.s3.AmazonS3Client.getObjectMetadata(AmazonS3Client.java:956)
at org.apache.hadoop.fs.s3a.S3AFileSystem.getFileStatus(S3AFileSystem.java:952)
at org.apache.hadoop.fs.s3a.S3AFileSystem.listStatus(S3AFileSystem.java:794)
at org.apache.hadoop.fs.Globber.listStatus(Globber.java:69)
at org.apache.hadoop.fs.Globber.glob(Globber.java:217)
at org.apache.hadoop.fs.FileSystem.globStatus(FileSystem.java:1655)
at org.apache.spark.deploy.SparkHadoopUtil.globPath(SparkHadoopUtil.scala:276)
at org.apache.spark.deploy.SparkHadoopUtil.globPathIfNecessary(SparkHadoopUtil.scala:283)
at org.apache.spark.sql.execution.datasources.ResolvedDataSource$$anonfun$11.apply(ResolvedDataSource.scala:173)
at org.apache.spark.sql.execution.datasources.ResolvedDataSource$$anonfun$11.apply(ResolvedDataSource.scala:169)
at scala.collection.TraversableLike$$anonfun$flatMap$1.apply(TraversableLike.scala:251)
at scala.collection.TraversableLike$$anonfun$flatMap$1.apply(TraversableLike.scala:251)
at scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:33)
at scala.collection.mutable.ArrayOps$ofRef.foreach(ArrayOps.scala:108)
at scala.collection.TraversableLike$class.flatMap(TraversableLike.scala:251)
at scala.collection.mutable.ArrayOps$ofRef.flatMap(ArrayOps.scala:108)
at org.apache.spark.sql.execution.datasources.ResolvedDataSource$.apply(ResolvedDataSource.scala:169)
at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:119)
at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:109)
at org.apache.spark.sql.DataFrameReader.json(DataFrameReader.scala:244)
at com.test.LogParser$.main(LogParser.scala:295)
at com.test.LogParser.main(LogParser.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:497)
at org.apache.spark.deploy.yarn.ApplicationMaster$$anon$2.run(ApplicationMaster.scala:559)
或者如果我使用这个:
val logRDD = sqlContext.read.json("s3n://test/logs/2016-07-0*/*.gz")
然后我明白了:
16/09/29 04:08:57 ERROR ApplicationMaster: User class threw exception: org.apache.hadoop.security.AccessControlException: Permission denied: s3n://test/logs
org.apache.hadoop.security.AccessControlException: Permission denied: s3n://test/logs
at org.apache.hadoop.fs.s3native.Jets3tNativeFileSystemStore.processException(Jets3tNativeFileSystemStore.java:449)
at org.apache.hadoop.fs.s3native.Jets3tNativeFileSystemStore.processException(Jets3tNativeFileSystemStore.java:427)
at org.apache.hadoop.fs.s3native.Jets3tNativeFileSystemStore.handleException(Jets3tNativeFileSystemStore.java:411)
at org.apache.hadoop.fs.s3native.Jets3tNativeFileSystemStore.retrieveMetadata(Jets3tNativeFileSystemStore.java:181)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:497)
at org.apache.hadoop.io.retry.RetryInvocationHandler.invokeMethod(RetryInvocationHandler.java:256)
at org.apache.hadoop.io.retry.RetryInvocationHandler.invoke(RetryInvocationHandler.java:104)
at org.apache.hadoop.fs.s3native.$Proxy42.retrieveMetadata(Unknown Source)
at org.apache.hadoop.fs.s3native.NativeS3FileSystem.listStatus(NativeS3FileSystem.java:530)
at org.apache.hadoop.fs.Globber.listStatus(Globber.java:69)
at org.apache.hadoop.fs.Globber.glob(Globber.java:217)
at org.apache.hadoop.fs.FileSystem.globStatus(FileSystem.java:1674)
at org.apache.hadoop.mapred.FileInputFormat.singleThreadedListStatus(FileInputFormat.java:259)
at org.apache.hadoop.mapred.FileInputFormat.listStatus(FileInputFormat.java:229)
at org.apache.hadoop.mapred.FileInputFormat.getSplits(FileInputFormat.java:315)
at org.apache.spark.rdd.HadoopRDD.getPartitions(HadoopRDD.scala:203)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:242)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:240)
at scala.Option.getOrElse(Option.scala:120)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:240)
at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:35)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:242)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:240)
at scala.Option.getOrElse(Option.scala:120)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:240)
at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:35)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:242)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:240)
at scala.Option.getOrElse(Option.scala:120)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:240)
at org.apache.spark.rdd.RDD$$anonfun$treeAggregate$1.apply(RDD.scala:1136)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:111)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:323)
at org.apache.spark.rdd.RDD.treeAggregate(RDD.scala:1134)
at org.apache.spark.sql.execution.datasources.json.InferSchema$.infer(InferSchema.scala:65)
at org.apache.spark.sql.execution.datasources.json.JSONRelation$$anonfun$4.apply(JSONRelation.scala:114)
at org.apache.spark.sql.execution.datasources.json.JSONRelation$$anonfun$4.apply(JSONRelation.scala:109)
at scala.Option.getOrElse(Option.scala:120)
at org.apache.spark.sql.execution.datasources.json.JSONRelation.dataSchema$lzycompute(JSONRelation.scala:109)
at org.apache.spark.sql.execution.datasources.json.JSONRelation.dataSchema(JSONRelation.scala:108)
at org.apache.spark.sql.sources.HadoopFsRelation.schema$lzycompute(interfaces.scala:636)
at org.apache.spark.sql.sources.HadoopFsRelation.schema(interfaces.scala:635)
at org.apache.spark.sql.execution.datasources.LogicalRelation.<init>(LogicalRelation.scala:37)
at org.apache.spark.sql.SQLContext.baseRelationToDataFrame(SQLContext.scala:442)
at org.apache.spark.sql.DataFrameReader.json(DataFrameReader.scala:288)
at com.test.LogParser$.main(LogParser.scala:294)
at com.test.LogParser.main(LogParser.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:497)
at org.apache.spark.deploy.yarn.ApplicationMaster$$anon$2.run(ApplicationMaster.scala:559)
Caused by: org.jets3t.service.impl.rest.HttpException
at org.jets3t.service.impl.rest.httpclient.RestStorageService.performRequest(RestStorageService.java:423)
at org.jets3t.service.impl.rest.httpclient.RestStorageService.performRequest(RestStorageService.java:277)
at org.jets3t.service.impl.rest.httpclient.RestStorageService.performRestHead(RestStorageService.java:1038)
at org.jets3t.service.impl.rest.httpclient.RestStorageService.getObjectImpl(RestStorageService.java:2250)
at org.jets3t.service.impl.rest.httpclient.RestStorageService.getObjectDetailsImpl(RestStorageService.java:2179)
at org.jets3t.service.StorageService.getObjectDetails(StorageService.java:1120)
at org.jets3t.service.StorageService.getObjectDetails(StorageService.java:575)
at org.apache.hadoop.fs.s3native.Jets3tNativeFileSystemStore.retrieveMetadata(Jets3tNativeFileSystemStore.java:174)
... 52 more
为什么它们不同?
最佳答案
像这样提供基本路径:
spark.read.option("basePath", basePath2).json(paths.toSeq:_*)
Base path是你要读取的所有路径中完全不修改的路径中最长的字符串。
关于scala - 使用正则表达式时 Spark S3 访问被拒绝,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/39761622/
目前正在学习 Spark 的类(class)并了解到执行者的定义: Each executor will hold a chunk of the data to be processed. Thisc
阅读了有关 http://spark.apache.org/docs/0.8.0/cluster-overview.html 的一些文档后,我有一些问题想要澄清。 以 Spark 为例: JavaSp
Spark核心中的调度器与以下Spark Stack(来自Learning Spark:Lightning-Fast Big Data Analysis一书)中的Standalone Schedule
我想在 spark-submit 或 start 处设置 spark.eventLog.enabled 和 spark.eventLog.dir -all level -- 不要求在 scala/ja
我有来自 SQL Server 的数据,需要在 Apache Spark (Databricks) 中进行操作。 在 SQL Server 中,此表的三个键列使用区分大小写的 COLLATION 选项
所有这些有什么区别和用途? spark.local.ip spark.driver.host spark.driver.bind地址 spark.driver.hostname 如何将机器修复为 Sp
我有大约 10 个 Spark 作业,每个作业都会进行一些转换并将数据加载到数据库中。必须为每个作业单独打开和关闭 Spark session ,每次初始化都会耗费时间。 是否可以只创建一次 Spar
/Downloads/spark-3.0.1-bin-hadoop2.7/bin$ ./spark-shell 20/09/23 10:58:45 WARN Utils: Your hostname,
我是 Spark 的完全新手,并且刚刚开始对此进行更多探索。我选择了更长的路径,不使用任何 CDH 发行版安装 hadoop,并且我从 Apache 网站安装了 Hadoop 并自己设置配置文件以了解
TL; 博士 Spark UI 显示的内核和内存数量与我在使用 spark-submit 时要求的数量不同 更多细节: 我在独立模式下运行 Spark 1.6。 当我运行 spark-submit 时
spark-submit 上的文档说明如下: The spark-submit script in Spark’s bin directory is used to launch applicatio
关闭。这个问题是opinion-based .它目前不接受答案。 想改善这个问题吗?更新问题,以便可以通过 editing this post 用事实和引文回答问题. 6 个月前关闭。 Improve
我想了解接收器如何在 Spark Streaming 中工作。根据我的理解,将有一个接收器任务在执行器中运行,用于收集数据并保存为 RDD。当调用 start() 时,接收器开始读取。需要澄清以下内容
有没有办法在不同线程中使用相同的 spark 上下文并行运行多个 spark 作业? 我尝试使用 Vertx 3,但看起来每个作业都在排队并按顺序启动。 如何让它在相同的 spark 上下文中同时运行
我们有一个 Spark 流应用程序,这是一项长期运行的任务。事件日志指向 hdfs 位置 hdfs://spark-history,当我们开始流式传输应用程序时正在其中创建 application_X
我们正在尝试找到一种加载 Spark (2.x) ML 训练模型的方法,以便根据请求(通过 REST 接口(interface))我们可以查询它并获得预测,例如http://predictor.com
Spark newb 问题:我在 spark-sql 中进行完全相同的 Spark SQL 查询并在 spark-shell . spark-shell版本大约需要 10 秒,而 spark-sql版
我正在使用 Spark 流。根据 Spark 编程指南(参见 http://spark.apache.org/docs/latest/programming-guide.html#accumulato
我正在使用 CDH 5.2。我可以使用 spark-shell 运行命令。 如何运行包含spark命令的文件(file.spark)。 有没有办法在不使用 sbt 的情况下在 CDH 5.2 中运行/
我使用 Elasticsearch 已经有一段时间了,但使用 Cassandra 的经验很少。 现在,我有一个项目想要使用 Spark 来处理数据,但我需要决定是否应该使用 Cassandra 还是
我是一名优秀的程序员,十分优秀!