gpt4 book ai didi

hadoop - CombineFileInputFormat 始终只启动一个映射 Hadoop 1.2.1

转载 作者:可可西里 更新时间:2023-11-01 14:45:56 27 4
gpt4 key购买 nike

我正在尝试使用测试 CombineFileInputFormat 来处理每个 8 MB 的几个小文件(20 个文件)。我遵循了此 blog 中给出的示例.我能够实现和测试它。最终结果是正确的。但令我惊讶的是,它总是以一张 map 结束。我尝试将属性“mapred.max.split.size”设置为各种值,如 16MB、32MB 等(当然以字节为单位)但没有成功。还有什么我需要做的吗?或者这是正确的行为吗?

我正在运行一个默认复制为 2 的双节点集群。下面给出的是开发的代码。非常感谢任何帮助。

package inverika.test.retail;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.IOException;
import org.apache.hadoop.mapreduce.Reducer;

public class CategoryCount {

public static class CategoryMapper
extends Mapper<LongWritable, Text, Text, IntWritable> {

private final static IntWritable one = new IntWritable(1);
private String[] columns = new String[8];

@Override
public void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {
columns = value.toString().split(",");
context.write(new Text(columns[4]), one);
}
}

public static class CategoryReducer
extends Reducer< Text, IntWritable, Text, IntWritable> {

@Override
public void reduce(Text key, Iterable<IntWritable> values, Context context)
throws IOException, InterruptedException {

int sum = 0;

for (IntWritable value : values) {
sum += value.get();
}
context.write(key, new IntWritable(sum));
}
}

public static void main(String args[]) throws Exception {
if (args.length != 2) {
System.err.println("Usage: CategoryCount <input Path> <output Path>");
System.exit(-1);
}

Configuration conf = new Configuration();
conf.set("mapred.textoutputformat.separator", ",");
conf.set("mapred.max.split.size", "16777216"); // 16 MB

Job job = new Job(conf, "Retail Category Count");
job.setJarByClass(CategoryCount.class);
job.setMapperClass(CategoryMapper.class);
job.setReducerClass(CategoryReducer.class);
job.setInputFormatClass(CombinedInputFormat.class);
//CombineFileInputFormat.setMaxInputSplitSize(job, 16777216);
CombinedInputFormat.setMaxInputSplitSize(job, 16777216);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
job.setOutputFormatClass(TextOutputFormat.class);

FileInputFormat.addInputPath(job, new Path(args[0]) );
FileOutputFormat.setOutputPath(job, new Path(args[1]) );
//job.submit();
//System.exit(job.waitForCompletion(false) ? 0 : 1);
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}

这是实现的 CombinedFileInputFormat

package inverika.test.retail;

import java.io.IOException;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.lib.input.CombineFileRecordReader;
import org.apache.hadoop.mapreduce.lib.input.CombineFileSplit;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;
import org.apache.hadoop.mapreduce.lib.input.LineRecordReader;
import org.apache.hadoop.mapreduce.InputSplit;
import org.apache.hadoop.mapreduce.RecordReader;
import org.apache.hadoop.mapreduce.TaskAttemptContext;
import org.apache.hadoop.mapreduce.lib.input.CombineFileInputFormat;

public class CombinedInputFormat extends CombineFileInputFormat<LongWritable, Text> {

@Override
public RecordReader<LongWritable, Text>
createRecordReader(InputSplit split, TaskAttemptContext context)
throws IOException {

CombineFileRecordReader<LongWritable, Text> reader =
new CombineFileRecordReader<LongWritable, Text>(
(CombineFileSplit) split, context, myCombineFileRecordReader.class);
return reader;
}

public static class myCombineFileRecordReader extends RecordReader<LongWritable, Text> {
private LineRecordReader lineRecordReader = new LineRecordReader();

public myCombineFileRecordReader(CombineFileSplit split,
TaskAttemptContext context, Integer index) throws IOException {

FileSplit fileSplit = new FileSplit(split.getPath(index),
split.getOffset(index),
split.getLength(index),
split.getLocations());
lineRecordReader.initialize(fileSplit, context);
}

@Override
public void initialize(InputSplit inputSplit, TaskAttemptContext context)
throws IOException, InterruptedException {
//linerecordReader.initialize(inputSplit, context);
}

@Override
public void close() throws IOException {
lineRecordReader.close();
}

@Override
public float getProgress() throws IOException {
return lineRecordReader.getProgress();
}

@Override
public LongWritable getCurrentKey() throws IOException,
InterruptedException {
return lineRecordReader.getCurrentKey();
}

@Override
public Text getCurrentValue() throws IOException, InterruptedException {
return lineRecordReader.getCurrentValue();
}

@Override
public boolean nextKeyValue() throws IOException, InterruptedException {
return lineRecordReader.nextKeyValue();
}
}
}

最佳答案

当使用CombineFileInputFormat 作为输入格式类时,您需要设置最大拆分大小。或者,当所有 block 都来自同一个机架时,您可能会得到恰好 ONLY ONE 映射器。

您可以通过以下方式之一实现此目的:

  • 调用CombineFileInputFormat.setMaxSplitSize()方法
  • 设置 mapreduce.input.fileinputformat.split.maxsizemapred.max.split.size(已弃用)配置参数
    例如,通过发出以下调用

    job.getConfiguration().setLong("mapreduce.input.fileinputformat.split.maxsize", (long)(256*1024*1024));

    您将最大拆分大小设置为 256MB。


引用:

关于hadoop - CombineFileInputFormat 始终只启动一个映射 Hadoop 1.2.1,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/18556282/

27 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com