- android - RelativeLayout 背景可绘制重叠内容
- android - 如何链接 cpufeatures lib 以获取 native android 库?
- java - OnItemClickListener 不起作用,但 OnLongItemClickListener 在自定义 ListView 中起作用
- java - Android 文件转字符串
1、版本 Spark :2.0.0标度:2.11.8java:1.8.0_91hadoop:2.7.2
2、问题:当我在 yarn 上提交 scala 程序到 spark 时,它抛出一个异常:
Caused by: java.lang.IllegalStateException: Library directory '/opt/hadoop/tmp/nm-local-dir/usercache/hadoop/appcache/application_1471514504287_0021/container_1471514504287_0021_01_000002/assembly/target/scala-2.11/jars' does not exist; make sure Spark is built.
3、命令
spark-submit --master yarn --deploy-mode cluster --class org.apache.spark.mllib.learning.recommend.CollaborativeFilteringSpark collaborativeFilteringSpark.jar
4、所有日志:
16/08/19 11:07:35 INFO SparkContext: Running Spark version 2.0.0
16/08/19 11:07:35 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
16/08/19 11:07:36 INFO SecurityManager: Changing view acls to: hadoop
16/08/19 11:07:36 INFO SecurityManager: Changing modify acls to: hadoop
16/08/19 11:07:36 INFO SecurityManager: Changing view acls groups to:
16/08/19 11:07:36 INFO SecurityManager: Changing modify acls groups to:
16/08/19 11:07:36 INFO SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(hadoop); groups with view permissions: Set(); users with modify permissions: Set(hadoop); groups with modify permissions: Set()
16/08/19 11:07:36 INFO Utils: Successfully started service 'sparkDriver' on port 43981.
16/08/19 11:07:36 INFO SparkEnv: Registering MapOutputTracker
16/08/19 11:07:36 INFO SparkEnv: Registering BlockManagerMaster
16/08/19 11:07:36 INFO DiskBlockManager: Created local directory at /opt/spark/blockmgr-57cf9a28-536c-4f03-83cc-c6a59cdeb825
16/08/19 11:07:36 INFO MemoryStore: MemoryStore started with capacity 413.9 MB
16/08/19 11:07:36 INFO SparkEnv: Registering OutputCommitCoordinator
16/08/19 11:07:37 INFO Utils: Successfully started service 'SparkUI' on port 4040.
16/08/19 11:07:37 INFO SparkUI: Bound SparkUI to 0.0.0.0, and started at http://192.168.137.101:4040
16/08/19 11:07:37 INFO SparkContext: Added JAR file:/home/hadoop/spark_program/scala/collaborativeFilteringSpark.jar at spark://192.168.137.101:43981/jars/collaborativeFilteringSpark.jar with timestamp 1471576057423
16/08/19 11:07:38 INFO RMProxy: Connecting to ResourceManager at dev-01/192.168.137.101:8032
16/08/19 11:07:38 INFO Client: Requesting a new application from cluster with 1 NodeManagers
16/08/19 11:07:38 INFO Client: Verifying our application has not requested more than the maximum memory capability of the cluster (8192 MB per container)
16/08/19 11:07:38 INFO Client: Will allocate AM container, with 896 MB memory including 384 MB overhead
16/08/19 11:07:38 INFO Client: Setting up container launch context for our AM
16/08/19 11:07:38 INFO Client: Setting up the launch environment for our AM container
16/08/19 11:07:38 INFO Client: Preparing resources for our AM container
16/08/19 11:07:39 WARN Client: Neither spark.yarn.jars nor spark.yarn.archive is set, falling back to uploading libraries under SPARK_HOME.
16/08/19 11:07:40 INFO Client: Uploading resource file:/opt/spark/spark-e7da4489-d07e-4c42-aa50-be789ad1943e/__spark_libs__7265506257548877328.zip -> hdfs://dev-01:9000/user/hadoop/.sparkStaging/application_1471514504287_0021/__spark_libs__7265506257548877328.zip
16/08/19 11:07:44 INFO Client: Uploading resource file:/opt/spark/spark-e7da4489-d07e-4c42-aa50-be789ad1943e/__spark_conf__3473502575984181564.zip -> hdfs://dev-01:9000/user/hadoop/.sparkStaging/application_1471514504287_0021/__spark_conf__.zip
16/08/19 11:07:44 INFO SecurityManager: Changing view acls to: hadoop
16/08/19 11:07:44 INFO SecurityManager: Changing modify acls to: hadoop
16/08/19 11:07:44 INFO SecurityManager: Changing view acls groups to:
16/08/19 11:07:44 INFO SecurityManager: Changing modify acls groups to:
16/08/19 11:07:44 INFO SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(hadoop); groups with view permissions: Set(); users with modify permissions: Set(hadoop); groups with modify permissions: Set()
16/08/19 11:07:44 INFO Client: Submitting application application_1471514504287_0021 to ResourceManager
16/08/19 11:07:44 INFO YarnClientImpl: Submitted application application_1471514504287_0021
16/08/19 11:07:44 INFO SchedulerExtensionServices: Starting Yarn extension services with app application_1471514504287_0021 and attemptId None
16/08/19 11:07:45 INFO Client: Application report for application_1471514504287_0021 (state: ACCEPTED)
16/08/19 11:07:45 INFO Client:
client token: N/A
diagnostics: N/A
ApplicationMaster host: N/A
ApplicationMaster RPC port: -1
queue: default
start time: 1471576064764
final status: UNDEFINED
tracking URL: http://dev-01:8088/proxy/application_1471514504287_0021/
user: hadoop
16/08/19 11:07:46 INFO Client: Application report for application_1471514504287_0021 (state: ACCEPTED)
16/08/19 11:07:47 INFO Client: Application report for application_1471514504287_0021 (state: ACCEPTED)
16/08/19 11:07:48 INFO Client: Application report for application_1471514504287_0021 (state: ACCEPTED)
16/08/19 11:07:49 INFO Client: Application report for application_1471514504287_0021 (state: ACCEPTED)
16/08/19 11:07:50 INFO Client: Application report for application_1471514504287_0021 (state: ACCEPTED)
16/08/19 11:07:51 INFO Client: Application report for application_1471514504287_0021 (state: ACCEPTED)
16/08/19 11:07:52 INFO Client: Application report for application_1471514504287_0021 (state: ACCEPTED)
16/08/19 11:07:53 INFO Client: Application report for application_1471514504287_0021 (state: ACCEPTED)
16/08/19 11:07:54 INFO Client: Application report for application_1471514504287_0021 (state: ACCEPTED)
16/08/19 11:07:55 INFO YarnSchedulerBackend$YarnSchedulerEndpoint: ApplicationMaster registered as NettyRpcEndpointRef(null)
16/08/19 11:07:55 INFO YarnClientSchedulerBackend: Add WebUI Filter. org.apache.hadoop.yarn.server.webproxy.amfilter.AmIpFilter, Map(PROXY_HOSTS -> dev-01, PROXY_URI_BASES -> http://dev-01:8088/proxy/application_1471514504287_0021), /proxy/application_1471514504287_0021
16/08/19 11:07:55 INFO JettyUtils: Adding filter: org.apache.hadoop.yarn.server.webproxy.amfilter.AmIpFilter
16/08/19 11:07:55 INFO Client: Application report for application_1471514504287_0021 (state: ACCEPTED)
16/08/19 11:07:56 INFO Client: Application report for application_1471514504287_0021 (state: RUNNING)
16/08/19 11:07:56 INFO Client:
client token: N/A
diagnostics: N/A
ApplicationMaster host: 192.168.137.102
ApplicationMaster RPC port: 0
queue: default
start time: 1471576064764
final status: UNDEFINED
tracking URL: http://dev-01:8088/proxy/application_1471514504287_0021/
user: hadoop
16/08/19 11:07:56 INFO YarnClientSchedulerBackend: Application application_1471514504287_0021 has started running.
16/08/19 11:07:56 INFO Utils: Successfully started service 'org.apache.spark.network.netty.NettyBlockTransferService' on port 46171.
16/08/19 11:07:56 INFO NettyBlockTransferService: Server created on 192.168.137.101:46171
16/08/19 11:07:56 INFO BlockManagerMaster: Registering BlockManager BlockManagerId(driver, 192.168.137.101, 46171)
16/08/19 11:07:56 INFO BlockManagerMasterEndpoint: Registering block manager 192.168.137.101:46171 with 413.9 MB RAM, BlockManagerId(driver, 192.168.137.101, 46171)
16/08/19 11:07:56 INFO BlockManagerMaster: Registered BlockManager BlockManagerId(driver, 192.168.137.101, 46171)
16/08/19 11:08:03 INFO YarnSchedulerBackend$YarnDriverEndpoint: Registered executor NettyRpcEndpointRef(null) (192.168.137.102:42406) with ID 1
16/08/19 11:08:03 INFO BlockManagerMasterEndpoint: Registering block manager dev-02:35791 with 413.9 MB RAM, BlockManagerId(1, dev-02, 35791)
16/08/19 11:08:05 INFO YarnSchedulerBackend$YarnDriverEndpoint: Registered executor NettyRpcEndpointRef(null) (192.168.137.102:42410) with ID 2
16/08/19 11:08:05 INFO YarnClientSchedulerBackend: SchedulerBackend is ready for scheduling beginning after reached minRegisteredResourcesRatio: 0.8
16/08/19 11:08:05 INFO BlockManagerMasterEndpoint: Registering block manager dev-02:37169 with 413.9 MB RAM, BlockManagerId(2, dev-02, 37169)
16/08/19 11:08:06 INFO SparkContext: Starting job: foreach at CollaborativeFilteringSpark.scala:62
16/08/19 11:08:06 INFO DAGScheduler: Got job 0 (foreach at CollaborativeFilteringSpark.scala:62) with 2 output partitions
16/08/19 11:08:06 INFO DAGScheduler: Final stage: ResultStage 0 (foreach at CollaborativeFilteringSpark.scala:62)
16/08/19 11:08:06 INFO DAGScheduler: Parents of final stage: List()
16/08/19 11:08:06 INFO DAGScheduler: Missing parents: List()
16/08/19 11:08:06 INFO DAGScheduler: Submitting ResultStage 0 (ParallelCollectionRDD[0] at parallelize at CollaborativeFilteringSpark.scala:18), which has no missing parents
16/08/19 11:08:06 INFO MemoryStore: Block broadcast_0 stored as values in memory (estimated size 1432.0 B, free 413.9 MB)
16/08/19 11:08:06 INFO MemoryStore: Block broadcast_0_piece0 stored as bytes in memory (estimated size 1035.0 B, free 413.9 MB)
16/08/19 11:08:06 INFO BlockManagerInfo: Added broadcast_0_piece0 in memory on 192.168.137.101:46171 (size: 1035.0 B, free: 413.9 MB)
16/08/19 11:08:06 INFO SparkContext: Created broadcast 0 from broadcast at DAGScheduler.scala:1012
16/08/19 11:08:06 INFO DAGScheduler: Submitting 2 missing tasks from ResultStage 0 (ParallelCollectionRDD[0] at parallelize at CollaborativeFilteringSpark.scala:18)
16/08/19 11:08:06 INFO YarnScheduler: Adding task set 0.0 with 2 tasks
16/08/19 11:08:06 INFO TaskSetManager: Starting task 0.0 in stage 0.0 (TID 0, dev-02, partition 0, PROCESS_LOCAL, 5417 bytes)
16/08/19 11:08:06 INFO TaskSetManager: Starting task 1.0 in stage 0.0 (TID 1, dev-02, partition 1, PROCESS_LOCAL, 5423 bytes)
16/08/19 11:08:06 INFO YarnSchedulerBackend$YarnDriverEndpoint: Launching task 0 on executor id: 2 hostname: dev-02.
16/08/19 11:08:06 INFO YarnSchedulerBackend$YarnDriverEndpoint: Launching task 1 on executor id: 1 hostname: dev-02.
16/08/19 11:08:07 INFO BlockManagerInfo: Added broadcast_0_piece0 in memory on dev-02:37169 (size: 1035.0 B, free: 413.9 MB)
16/08/19 11:08:07 INFO BlockManagerInfo: Added broadcast_0_piece0 in memory on dev-02:35791 (size: 1035.0 B, free: 413.9 MB)
16/08/19 11:08:13 WARN TaskSetManager: Lost task 1.0 in stage 0.0 (TID 1, dev-02): java.lang.ExceptionInInitializerError
at org.apache.spark.mllib.learning.recommend.CollaborativeFilteringSpark$$anonfun$main$1.apply(CollaborativeFilteringSpark.scala:64)
at org.apache.spark.mllib.learning.recommend.CollaborativeFilteringSpark$$anonfun$main$1.apply(CollaborativeFilteringSpark.scala:62)
at scala.collection.Iterator$class.foreach(Iterator.scala:893)
at org.apache.spark.InterruptibleIterator.foreach(InterruptibleIterator.scala:28)
at org.apache.spark.rdd.RDD$$anonfun$foreach$1$$anonfun$apply$27.apply(RDD.scala:875)
at org.apache.spark.rdd.RDD$$anonfun$foreach$1$$anonfun$apply$27.apply(RDD.scala:875)
at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1897)
at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1897)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:70)
at org.apache.spark.scheduler.Task.run(Task.scala:85)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:274)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
Caused by: java.lang.IllegalStateException: Library directory '/opt/hadoop/tmp/nm-local-dir/usercache/hadoop/appcache/application_1471514504287_0021/container_1471514504287_0021_01_000002/assembly/target/scala-2.11/jars' does not exist; make sure Spark is built.
at org.apache.spark.launcher.CommandBuilderUtils.checkState(CommandBuilderUtils.java:248)
at org.apache.spark.launcher.CommandBuilderUtils.findJarsDir(CommandBuilderUtils.java:368)
at org.apache.spark.launcher.YarnCommandBuilderUtils$.findJarsDir(YarnCommandBuilderUtils.scala:38)
at org.apache.spark.deploy.yarn.Client.prepareLocalResources(Client.scala:500)
at org.apache.spark.deploy.yarn.Client.createContainerLaunchContext(Client.scala:834)
at org.apache.spark.deploy.yarn.Client.submitApplication(Client.scala:167)
at org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend.start(YarnClientSchedulerBackend.scala:56)
at org.apache.spark.scheduler.TaskSchedulerImpl.start(TaskSchedulerImpl.scala:149)
at org.apache.spark.SparkContext.<init>(SparkContext.scala:500)
at org.apache.spark.mllib.learning.recommend.CollaborativeFilteringSpark$.<init>(CollaborativeFilteringSpark.scala:16)
at org.apache.spark.mllib.learning.recommend.CollaborativeFilteringSpark$.<clinit>(CollaborativeFilteringSpark.scala)
... 14 more
16/08/19 11:08:13 INFO TaskSetManager: Starting task 1.1 in stage 0.0 (TID 2, dev-02, partition 1, PROCESS_LOCAL, 5423 bytes)
16/08/19 11:08:13 INFO YarnSchedulerBackend$YarnDriverEndpoint: Launching task 2 on executor id: 1 hostname: dev-02.
16/08/19 11:08:13 INFO TaskSetManager: Lost task 0.0 in stage 0.0 (TID 0) on executor dev-02: java.lang.ExceptionInInitializerError (null) [duplicate 1]
16/08/19 11:08:13 INFO TaskSetManager: Starting task 0.1 in stage 0.0 (TID 3, dev-02, partition 0, PROCESS_LOCAL, 5417 bytes)
16/08/19 11:08:13 INFO YarnSchedulerBackend$YarnDriverEndpoint: Launching task 3 on executor id: 2 hostname: dev-02.
16/08/19 11:08:14 WARN TransportChannelHandler: Exception in connection from /192.168.137.102:42406
java.io.IOException: Connection reset by peer
at sun.nio.ch.FileDispatcherImpl.read0(Native Method)
at sun.nio.ch.SocketDispatcher.read(SocketDispatcher.java:39)
at sun.nio.ch.IOUtil.readIntoNativeBuffer(IOUtil.java:223)
at sun.nio.ch.IOUtil.read(IOUtil.java:192)
at sun.nio.ch.SocketChannelImpl.read(SocketChannelImpl.java:380)
at io.netty.buffer.PooledUnsafeDirectByteBuf.setBytes(PooledUnsafeDirectByteBuf.java:313)
at io.netty.buffer.AbstractByteBuf.writeBytes(AbstractByteBuf.java:881)
at io.netty.channel.socket.nio.NioSocketChannel.doReadBytes(NioSocketChannel.java:242)
at io.netty.channel.nio.AbstractNioByteChannel$NioByteUnsafe.read(AbstractNioByteChannel.java:119)
at io.netty.channel.nio.NioEventLoop.processSelectedKey(NioEventLoop.java:511)
at io.netty.channel.nio.NioEventLoop.processSelectedKeysOptimized(NioEventLoop.java:468)
at io.netty.channel.nio.NioEventLoop.processSelectedKeys(NioEventLoop.java:382)
at io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:354)
at io.netty.util.concurrent.SingleThreadEventExecutor$2.run(SingleThreadEventExecutor.java:111)
at java.lang.Thread.run(Thread.java:745)
16/08/19 11:08:14 INFO YarnSchedulerBackend$YarnDriverEndpoint: Disabling executor 1.
16/08/19 11:08:14 INFO DAGScheduler: Executor lost: 1 (epoch 0)
16/08/19 11:08:14 INFO BlockManagerMasterEndpoint: Trying to remove executor 1 from BlockManagerMaster.
16/08/19 11:08:14 INFO BlockManagerMasterEndpoint: Removing block manager BlockManagerId(1, dev-02, 35791)
16/08/19 11:08:14 INFO BlockManagerMaster: Removed 1 successfully in removeExecutor
16/08/19 11:08:14 WARN TransportChannelHandler: Exception in connection from /192.168.137.102:42410
java.io.IOException: Connection reset by peer
at sun.nio.ch.FileDispatcherImpl.read0(Native Method)
at sun.nio.ch.SocketDispatcher.read(SocketDispatcher.java:39)
at sun.nio.ch.IOUtil.readIntoNativeBuffer(IOUtil.java:223)
at sun.nio.ch.IOUtil.read(IOUtil.java:192)
at sun.nio.ch.SocketChannelImpl.read(SocketChannelImpl.java:380)
at io.netty.buffer.PooledUnsafeDirectByteBuf.setBytes(PooledUnsafeDirectByteBuf.java:313)
at io.netty.buffer.AbstractByteBuf.writeBytes(AbstractByteBuf.java:881)
at io.netty.channel.socket.nio.NioSocketChannel.doReadBytes(NioSocketChannel.java:242)
at io.netty.channel.nio.AbstractNioByteChannel$NioByteUnsafe.read(AbstractNioByteChannel.java:119)
at io.netty.channel.nio.NioEventLoop.processSelectedKey(NioEventLoop.java:511)
at io.netty.channel.nio.NioEventLoop.processSelectedKeysOptimized(NioEventLoop.java:468)
at io.netty.channel.nio.NioEventLoop.processSelectedKeys(NioEventLoop.java:382)
at io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:354)
at io.netty.util.concurrent.SingleThreadEventExecutor$2.run(SingleThreadEventExecutor.java:111)
at java.lang.Thread.run(Thread.java:745)
16/08/19 11:08:14 INFO YarnSchedulerBackend$YarnDriverEndpoint: Disabling executor 2.
16/08/19 11:08:14 INFO DAGScheduler: Executor lost: 2 (epoch 1)
16/08/19 11:08:14 INFO BlockManagerMasterEndpoint: Trying to remove executor 2 from BlockManagerMaster.
16/08/19 11:08:14 INFO BlockManagerMasterEndpoint: Removing block manager BlockManagerId(2, dev-02, 37169)
16/08/19 11:08:14 INFO BlockManagerMaster: Removed 2 successfully in removeExecutor
16/08/19 11:08:14 WARN YarnSchedulerBackend$YarnSchedulerEndpoint: Container marked as failed: container_1471514504287_0021_01_000002 on host: dev-02. Exit status: 50. Diagnostics: Exception from container-launch.
Container id: container_1471514504287_0021_01_000002
Exit code: 50
Stack trace: ExitCodeException exitCode=50:
at org.apache.hadoop.util.Shell.runCommand(Shell.java:545)
at org.apache.hadoop.util.Shell.run(Shell.java:456)
at org.apache.hadoop.util.Shell$ShellCommandExecutor.execute(Shell.java:722)
at org.apache.hadoop.yarn.server.nodemanager.DefaultContainerExecutor.launchContainer(DefaultContainerExecutor.java:212)
at org.apache.hadoop.yarn.server.nodemanager.containermanager.launcher.ContainerLaunch.call(ContainerLaunch.java:302)
at org.apache.hadoop.yarn.server.nodemanager.containermanager.launcher.ContainerLaunch.call(ContainerLaunch.java:82)
at java.util.concurrent.FutureTask.run(FutureTask.java:266)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
Container exited with a non-zero exit code 50
16/08/19 11:08:14 ERROR YarnScheduler: Lost executor 1 on dev-02: Container marked as failed: container_1471514504287_0021_01_000002 on host: dev-02. Exit status: 50. Diagnostics: Exception from container-launch.
Container id: container_1471514504287_0021_01_000002
Exit code: 50
Stack trace: ExitCodeException exitCode=50:
at org.apache.hadoop.util.Shell.runCommand(Shell.java:545)
at org.apache.hadoop.util.Shell.run(Shell.java:456)
at org.apache.hadoop.util.Shell$ShellCommandExecutor.execute(Shell.java:722)
at org.apache.hadoop.yarn.server.nodemanager.DefaultContainerExecutor.launchContainer(DefaultContainerExecutor.java:212)
at org.apache.hadoop.yarn.server.nodemanager.containermanager.launcher.ContainerLaunch.call(ContainerLaunch.java:302)
at org.apache.hadoop.yarn.server.nodemanager.containermanager.launcher.ContainerLaunch.call(ContainerLaunch.java:82)
at java.util.concurrent.FutureTask.run(FutureTask.java:266)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
Container exited with a non-zero exit code 50
最佳答案
确保在您的集群中正确提取了 SPARK_HOME 环境变量。当 spark-shell 尝试查找 spark 库时会发生此类错误,但由于未设置 SPARK_HOME,因此无法找到库。
关于scala - yarn 上的 Spark 提交没有将 jar 分发到 nm-local-dir,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/39031346/
目前正在学习 Spark 的类(class)并了解到执行者的定义: Each executor will hold a chunk of the data to be processed. Thisc
阅读了有关 http://spark.apache.org/docs/0.8.0/cluster-overview.html 的一些文档后,我有一些问题想要澄清。 以 Spark 为例: JavaSp
Spark核心中的调度器与以下Spark Stack(来自Learning Spark:Lightning-Fast Big Data Analysis一书)中的Standalone Schedule
我想在 spark-submit 或 start 处设置 spark.eventLog.enabled 和 spark.eventLog.dir -all level -- 不要求在 scala/ja
我有来自 SQL Server 的数据,需要在 Apache Spark (Databricks) 中进行操作。 在 SQL Server 中,此表的三个键列使用区分大小写的 COLLATION 选项
所有这些有什么区别和用途? spark.local.ip spark.driver.host spark.driver.bind地址 spark.driver.hostname 如何将机器修复为 Sp
我有大约 10 个 Spark 作业,每个作业都会进行一些转换并将数据加载到数据库中。必须为每个作业单独打开和关闭 Spark session ,每次初始化都会耗费时间。 是否可以只创建一次 Spar
/Downloads/spark-3.0.1-bin-hadoop2.7/bin$ ./spark-shell 20/09/23 10:58:45 WARN Utils: Your hostname,
我是 Spark 的完全新手,并且刚刚开始对此进行更多探索。我选择了更长的路径,不使用任何 CDH 发行版安装 hadoop,并且我从 Apache 网站安装了 Hadoop 并自己设置配置文件以了解
TL; 博士 Spark UI 显示的内核和内存数量与我在使用 spark-submit 时要求的数量不同 更多细节: 我在独立模式下运行 Spark 1.6。 当我运行 spark-submit 时
spark-submit 上的文档说明如下: The spark-submit script in Spark’s bin directory is used to launch applicatio
关闭。这个问题是opinion-based .它目前不接受答案。 想改善这个问题吗?更新问题,以便可以通过 editing this post 用事实和引文回答问题. 6 个月前关闭。 Improve
我想了解接收器如何在 Spark Streaming 中工作。根据我的理解,将有一个接收器任务在执行器中运行,用于收集数据并保存为 RDD。当调用 start() 时,接收器开始读取。需要澄清以下内容
有没有办法在不同线程中使用相同的 spark 上下文并行运行多个 spark 作业? 我尝试使用 Vertx 3,但看起来每个作业都在排队并按顺序启动。 如何让它在相同的 spark 上下文中同时运行
我们有一个 Spark 流应用程序,这是一项长期运行的任务。事件日志指向 hdfs 位置 hdfs://spark-history,当我们开始流式传输应用程序时正在其中创建 application_X
我们正在尝试找到一种加载 Spark (2.x) ML 训练模型的方法,以便根据请求(通过 REST 接口(interface))我们可以查询它并获得预测,例如http://predictor.com
Spark newb 问题:我在 spark-sql 中进行完全相同的 Spark SQL 查询并在 spark-shell . spark-shell版本大约需要 10 秒,而 spark-sql版
我正在使用 Spark 流。根据 Spark 编程指南(参见 http://spark.apache.org/docs/latest/programming-guide.html#accumulato
我正在使用 CDH 5.2。我可以使用 spark-shell 运行命令。 如何运行包含spark命令的文件(file.spark)。 有没有办法在不使用 sbt 的情况下在 CDH 5.2 中运行/
我使用 Elasticsearch 已经有一段时间了,但使用 Cassandra 的经验很少。 现在,我有一个项目想要使用 Spark 来处理数据,但我需要决定是否应该使用 Cassandra 还是
我是一名优秀的程序员,十分优秀!