- android - RelativeLayout 背景可绘制重叠内容
- android - 如何链接 cpufeatures lib 以获取 native android 库?
- java - OnItemClickListener 不起作用,但 OnLongItemClickListener 在自定义 ListView 中起作用
- java - Android 文件转字符串
在下面的 Scala Spark 代码中,我需要找到不同列的计数及其值的百分比。为此,我需要对每一列使用 withColumn
方法,例如 date
、usage
、payment
、dateFinal
,usageFinal
,paymentFinal
。
对于每个计算,我都需要使用 withColumn
来获取总和和聚合。有什么方法可以让我不用写,
.withColumn("SUM", sum("count").over() ).withColumn("fraction", col("count") / sum("count").over()).withColumn("Percent", col("fraction") * 100 ).drop("fraction")
每一次?例如,您可以在下面的代码中看到。
var dateFinalDF = dateFinal.toDF(DateColumn).groupBy(DateColumn).count.withColumn("SUM", sum("count").over()).withColumn("fraction", col("count") / sum("count").over()).withColumn("Percent", col("fraction") * 100 ).drop("fraction")
var usageFinalDF = usageFinal.toDF(UsageColumn).groupBy(UsageColumn).count.withColumn("SUM", sum("count").over()).withColumn("fraction", col("count") / sum("count").over()).withColumn("Percent", col("fraction") * 100 ).drop("fraction")
var paymentFinalDF = paymentFinal.toDF(PaymentColumn).groupBy(PaymentColumn).count.withColumn("SUM", sum("count").over()).withColumn("fraction", col("count") / sum("count").over()).withColumn("Percent", col("fraction") * 100).drop("fraction")
现在我的代码如下所示,你能帮助我们为不同的列添加条件,如日期、使用情况等(例如,在代码中我们获取包含日期的列,而不是我们添加的计数和我们想要的其他条件)现在我们想要的那些东西是动态的,所有列名都应该放在一个 yml 文件中,并且必须从该文件中读取这些名称,我如何实现这一点,任何人都可以提供帮助,在阅读 YML 文件后我将如何修改我的代码,请帮助。
object latest
{
def main(args: Array[String])
{
var fileList = new ListBuffer[String]()
var dateList = new ListBuffer[String]()
var fileL = new ListBuffer[String]()
var fileL1 = new ListBuffer[String]()
val sparkConf = new SparkConf().setMaster("local[4]").setAppName("hbase sql")
val sc = new SparkContext(sparkConf)
val spark1 = SparkSession.builder().config(sc.getConf).getOrCreate()
val sqlContext = spark1.sqlContext
import spark1.implicits._
def f1(number: Double)=
{
"%.2f".format(number).toDouble
}
val udfFunc = udf(f1 _)
def getCountPercent(df: DataFrame): DataFrame =
{
df.withColumn("SUM", sum("count").over() )
.withColumn("fraction", col("count") / sum("count").over())
.withColumn("Percent", col("fraction") * 100 )
.withColumn("number", udfFunc(col("Percent")))
.drop("Percent")
.drop("fraction")
}
def occurenceCount(df: DataFrame,column: String)
{
var usageFinalDF = df.groupBy(column).count.transform(getCountPercent)
for (u <- usageFinalDF.collect())
{
fileList += column + '~' + u.mkString("~")
}
}
val headerCSV=spark1.sqlContext.read.format("CSV").option("header","true").option("delimiter", """|""").load("C:\\Users\\ayushgup\\Downloads\\Header3.csv")
val columns = headerCSV.columns
val data = spark1.sqlContext.read.format("CSV").option("delimiter", """|""").load("C:/Users/ayushgup/Downloads/home_data_usage_2018122723_1372673.csv").toDF(columns:_*)
for (coll <- columns.toList)
{
if (coll.toLowerCase().contains("date"))
{
for (datesss <- data.select(coll).collect())
{
dateList += datesss.toString().slice(1, 8)
}
var dateFinalDF = dateList.toList.toDF(coll)
occurenceCount(dateFinalDF,coll)
}
else if (coll.toLowerCase().contains("usage"))
{
var r = data.select(coll).withColumn(coll, when(col(coll) <= 1026, "<=1gb").when(col(coll) > 1026 && col(coll) < 5130, "1-5gb")
.when(col(coll) > 5130 && col(coll) < 10260, "5-10gb")
.when(col(coll) > 10260 && col(coll) < 20520, "10-20gb")
.when(col(coll) > 20520, ">20gb")
.otherwise(0)).toDF(coll)
occurenceCount(r,coll)
}
else if (coll.toLowerCase().contains("paymentamount"))
{
var r = data.select(coll).withColumn(coll, when(col(coll) <= 1500, "1-1500").when(col(coll) > 1500 && col(coll) < 1700, "1500-1700")
.when(col(coll) > 1700 && col(coll) < 1900, "1700-1900")
.when(col(coll) > 1900 && col(coll) < 2000, "1900-2000")
.when(col(coll) > 2000, ">2000")
.otherwise(0)).toDF(coll)
occurenceCount(r,coll)
}
else if (coll.toLowerCase().contains("accounttenure"))
{
var r = data.select(coll).withColumn(coll, when(col(coll) > 1000000 && col(coll) < 5000000, "1-5m").when(col(coll) > 5000000 && col(coll) < 11000000, "5-11m")
.when(col(coll) > 12000000 && col(coll) < 23000000, "12-23m")
.when(col(coll) > 24000000 && col(coll) < 35000000, "24-35m")
.when(col(coll) > 36000000, ">36m")
.otherwise(0)).toDF(coll)
occurenceCount(r,coll)
}
else if (coll.toLowerCase().equals("arpu"))
{
var r = data.select(coll).withColumn(coll, when(col(coll) <= 1500, "1-1500").when(col(coll) > 1500 && col(coll) < 1700, "1500-1700")
.when(col(coll) > 1700 && col(coll) < 1900, "1700-1900")
.when(col(coll) > 1900 && col(coll) < 2000, "1900-2000")
.when(col(coll) > 2000, ">2000")
.otherwise(0)).toDF(coll)
occurenceCount(r,coll)
}
else if (coll.equals("DisputeAmount") || coll.equals("ticketsAmount"))
{
var r = data.select(coll).withColumn(coll, when(col(coll) === 0, "0").when(col(coll) > 0, ">0")
.otherwise(1)).toDF(coll)
occurenceCount(r,coll)
}
else if (coll.equals("serviceOrdersCreatedLast90Days"))
{
var r = data.select(coll).withColumn(coll, when(col(coll) === 0, "0").when(col(coll) === 1, "1")
.when(col(coll) === 2, "2")
.when(col(coll) === 3, "3")
.when(col(coll) > 3, ">3"))
.toDF(coll)
occurenceCount(r,coll)
}
else
{
import spark1.implicits._
val actData1 = data.groupBy(coll).count().transform(getCountPercent)
occurenceCount(actData1,coll)
}
}
val f = fileList.toList
for (flist <- f)
{
fileL += flist.replaceAll("[\\[\\]]", "")
}
var ff = fileL.toDF()
var df1: DataFrame = ff.selectExpr("split(value, '~')[0] as
Attribute", "split(value, '~')[1] as Value","split(value, '~')[2] as
Count","split(value, '~')[3] as Sum","split(value, '~')[4] as
Percent");
}
}
最佳答案
您可以将所有.withColumn()
操作封装在一个函数中,该函数在应用所有操作后返回DataFrame
。
def getCountPercent(df: DataFrame): DataFrame = {
df.withColumn("SUM", sum("count").over() )
.withColumn("fraction", col("count") / sum("count").over())
.withColumn("Percent", col("fraction") * 100 )
.drop("fraction")
}
用法:
使用 .transform()
应用函数:
var dateFinalDF = dateFinal.toDF(DateColumn).groupBy(DateColumn).count.transform(getCountPercent)
var usageFinalDF = usageFinal.toDF(UsageColumn).groupBy(UsageColumn).count.transform(getCountPercent)
关于scala - 每个列值的 Spark 计数和百分比异常处理和加载到 Hive DB,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/54350261/
目前正在学习 Spark 的类(class)并了解到执行者的定义: Each executor will hold a chunk of the data to be processed. Thisc
阅读了有关 http://spark.apache.org/docs/0.8.0/cluster-overview.html 的一些文档后,我有一些问题想要澄清。 以 Spark 为例: JavaSp
Spark核心中的调度器与以下Spark Stack(来自Learning Spark:Lightning-Fast Big Data Analysis一书)中的Standalone Schedule
我想在 spark-submit 或 start 处设置 spark.eventLog.enabled 和 spark.eventLog.dir -all level -- 不要求在 scala/ja
我有来自 SQL Server 的数据,需要在 Apache Spark (Databricks) 中进行操作。 在 SQL Server 中,此表的三个键列使用区分大小写的 COLLATION 选项
所有这些有什么区别和用途? spark.local.ip spark.driver.host spark.driver.bind地址 spark.driver.hostname 如何将机器修复为 Sp
我有大约 10 个 Spark 作业,每个作业都会进行一些转换并将数据加载到数据库中。必须为每个作业单独打开和关闭 Spark session ,每次初始化都会耗费时间。 是否可以只创建一次 Spar
/Downloads/spark-3.0.1-bin-hadoop2.7/bin$ ./spark-shell 20/09/23 10:58:45 WARN Utils: Your hostname,
我是 Spark 的完全新手,并且刚刚开始对此进行更多探索。我选择了更长的路径,不使用任何 CDH 发行版安装 hadoop,并且我从 Apache 网站安装了 Hadoop 并自己设置配置文件以了解
TL; 博士 Spark UI 显示的内核和内存数量与我在使用 spark-submit 时要求的数量不同 更多细节: 我在独立模式下运行 Spark 1.6。 当我运行 spark-submit 时
spark-submit 上的文档说明如下: The spark-submit script in Spark’s bin directory is used to launch applicatio
关闭。这个问题是opinion-based .它目前不接受答案。 想改善这个问题吗?更新问题,以便可以通过 editing this post 用事实和引文回答问题. 6 个月前关闭。 Improve
我想了解接收器如何在 Spark Streaming 中工作。根据我的理解,将有一个接收器任务在执行器中运行,用于收集数据并保存为 RDD。当调用 start() 时,接收器开始读取。需要澄清以下内容
有没有办法在不同线程中使用相同的 spark 上下文并行运行多个 spark 作业? 我尝试使用 Vertx 3,但看起来每个作业都在排队并按顺序启动。 如何让它在相同的 spark 上下文中同时运行
我们有一个 Spark 流应用程序,这是一项长期运行的任务。事件日志指向 hdfs 位置 hdfs://spark-history,当我们开始流式传输应用程序时正在其中创建 application_X
我们正在尝试找到一种加载 Spark (2.x) ML 训练模型的方法,以便根据请求(通过 REST 接口(interface))我们可以查询它并获得预测,例如http://predictor.com
Spark newb 问题:我在 spark-sql 中进行完全相同的 Spark SQL 查询并在 spark-shell . spark-shell版本大约需要 10 秒,而 spark-sql版
我正在使用 Spark 流。根据 Spark 编程指南(参见 http://spark.apache.org/docs/latest/programming-guide.html#accumulato
我正在使用 CDH 5.2。我可以使用 spark-shell 运行命令。 如何运行包含spark命令的文件(file.spark)。 有没有办法在不使用 sbt 的情况下在 CDH 5.2 中运行/
我使用 Elasticsearch 已经有一段时间了,但使用 Cassandra 的经验很少。 现在,我有一个项目想要使用 Spark 来处理数据,但我需要决定是否应该使用 Cassandra 还是
我是一名优秀的程序员,十分优秀!