gpt4 book ai didi

scala - 每个列值的 Spark 计数和百分比异常处理和加载到 Hive DB

转载 作者:可可西里 更新时间:2023-11-01 14:32:33 29 4
gpt4 key购买 nike

在下面的 Scala Spark 代码中,我需要找到不同列的计数及其值的百分比。为此,我需要对每一列使用 withColumn 方法,例如 dateusagepaymentdateFinalusageFinalpaymentFinal

对于每个计算,我都需要使用 withColumn 来获取总和和聚合。有什么方法可以让我不用写,

.withColumn("SUM", sum("count").over() ).withColumn("fraction", col("count") / sum("count").over()).withColumn("Percent", col("fraction") * 100 ).drop("fraction")

每一次?例如,您可以在下面的代码中看到。

var dateFinalDF = dateFinal.toDF(DateColumn).groupBy(DateColumn).count.withColumn("SUM", sum("count").over()).withColumn("fraction", col("count") /  sum("count").over()).withColumn("Percent", col("fraction") * 100   ).drop("fraction")  

var usageFinalDF = usageFinal.toDF(UsageColumn).groupBy(UsageColumn).count.withColumn("SUM", sum("count").over()).withColumn("fraction", col("count") / sum("count").over()).withColumn("Percent", col("fraction") * 100 ).drop("fraction")

var paymentFinalDF = paymentFinal.toDF(PaymentColumn).groupBy(PaymentColumn).count.withColumn("SUM", sum("count").over()).withColumn("fraction", col("count") / sum("count").over()).withColumn("Percent", col("fraction") * 100).drop("fraction")

现在我的代码如下所示,你能帮助我们为不同的列添加条件,如日期、使用情况等(例如,在代码中我们获取包含日期的列,而不是我们添加的计数和我们想要的其他条件)现在我们想要的那些东西是动态的,所有列名都应该放在一个 yml 文件中,并且必须从该文件中读取这些名称,我如何实现这一点,任何人都可以提供帮助,在阅读 YML 文件后我将如何修改我的代码,请帮助。

object latest

{

def main(args: Array[String])

{


var fileList = new ListBuffer[String]()
var dateList = new ListBuffer[String]()
var fileL = new ListBuffer[String]()

var fileL1 = new ListBuffer[String]()

val sparkConf = new SparkConf().setMaster("local[4]").setAppName("hbase sql")
val sc = new SparkContext(sparkConf)
val spark1 = SparkSession.builder().config(sc.getConf).getOrCreate()
val sqlContext = spark1.sqlContext


import spark1.implicits._

def f1(number: Double)=
{
"%.2f".format(number).toDouble
}
val udfFunc = udf(f1 _)

def getCountPercent(df: DataFrame): DataFrame =

{
df.withColumn("SUM", sum("count").over() )
.withColumn("fraction", col("count") / sum("count").over())
.withColumn("Percent", col("fraction") * 100 )
.withColumn("number", udfFunc(col("Percent")))
.drop("Percent")
.drop("fraction")

}


def occurenceCount(df: DataFrame,column: String)
{

var usageFinalDF = df.groupBy(column).count.transform(getCountPercent)

for (u <- usageFinalDF.collect())
{
fileList += column + '~' + u.mkString("~")
}
}




val headerCSV=spark1.sqlContext.read.format("CSV").option("header","true").option("delimiter", """|""").load("C:\\Users\\ayushgup\\Downloads\\Header3.csv")

val columns = headerCSV.columns


val data = spark1.sqlContext.read.format("CSV").option("delimiter", """|""").load("C:/Users/ayushgup/Downloads/home_data_usage_2018122723_1372673.csv").toDF(columns:_*)

for (coll <- columns.toList)
{

if (coll.toLowerCase().contains("date"))
{

for (datesss <- data.select(coll).collect())
{
dateList += datesss.toString().slice(1, 8)

}

var dateFinalDF = dateList.toList.toDF(coll)

occurenceCount(dateFinalDF,coll)

}
else if (coll.toLowerCase().contains("usage"))
{

var r = data.select(coll).withColumn(coll, when(col(coll) <= 1026, "<=1gb").when(col(coll) > 1026 && col(coll) < 5130, "1-5gb")
.when(col(coll) > 5130 && col(coll) < 10260, "5-10gb")
.when(col(coll) > 10260 && col(coll) < 20520, "10-20gb")
.when(col(coll) > 20520, ">20gb")
.otherwise(0)).toDF(coll)

occurenceCount(r,coll)

}
else if (coll.toLowerCase().contains("paymentamount"))
{

var r = data.select(coll).withColumn(coll, when(col(coll) <= 1500, "1-1500").when(col(coll) > 1500 && col(coll) < 1700, "1500-1700")
.when(col(coll) > 1700 && col(coll) < 1900, "1700-1900")
.when(col(coll) > 1900 && col(coll) < 2000, "1900-2000")
.when(col(coll) > 2000, ">2000")
.otherwise(0)).toDF(coll)

occurenceCount(r,coll)

}
else if (coll.toLowerCase().contains("accounttenure"))
{

var r = data.select(coll).withColumn(coll, when(col(coll) > 1000000 && col(coll) < 5000000, "1-5m").when(col(coll) > 5000000 && col(coll) < 11000000, "5-11m")
.when(col(coll) > 12000000 && col(coll) < 23000000, "12-23m")
.when(col(coll) > 24000000 && col(coll) < 35000000, "24-35m")
.when(col(coll) > 36000000, ">36m")
.otherwise(0)).toDF(coll)

occurenceCount(r,coll)
}
else if (coll.toLowerCase().equals("arpu"))
{

var r = data.select(coll).withColumn(coll, when(col(coll) <= 1500, "1-1500").when(col(coll) > 1500 && col(coll) < 1700, "1500-1700")
.when(col(coll) > 1700 && col(coll) < 1900, "1700-1900")
.when(col(coll) > 1900 && col(coll) < 2000, "1900-2000")
.when(col(coll) > 2000, ">2000")
.otherwise(0)).toDF(coll)

occurenceCount(r,coll)

}
else if (coll.equals("DisputeAmount") || coll.equals("ticketsAmount"))
{

var r = data.select(coll).withColumn(coll, when(col(coll) === 0, "0").when(col(coll) > 0, ">0")
.otherwise(1)).toDF(coll)

occurenceCount(r,coll)

}
else if (coll.equals("serviceOrdersCreatedLast90Days"))
{

var r = data.select(coll).withColumn(coll, when(col(coll) === 0, "0").when(col(coll) === 1, "1")
.when(col(coll) === 2, "2")
.when(col(coll) === 3, "3")
.when(col(coll) > 3, ">3"))
.toDF(coll)

occurenceCount(r,coll)
}
else
{

import spark1.implicits._

val actData1 = data.groupBy(coll).count().transform(getCountPercent)



occurenceCount(actData1,coll)

}
}

val f = fileList.toList
for (flist <- f)
{

fileL += flist.replaceAll("[\\[\\]]", "")

}

var ff = fileL.toDF()


var df1: DataFrame = ff.selectExpr("split(value, '~')[0] as
Attribute", "split(value, '~')[1] as Value","split(value, '~')[2] as
Count","split(value, '~')[3] as Sum","split(value, '~')[4] as
Percent");

}

}

最佳答案

您可以将所有.withColumn()操作封装在一个函数中,该函数在应用所有操作后返回DataFrame

def getCountPercent(df: DataFrame): DataFrame = {
df.withColumn("SUM", sum("count").over() )
.withColumn("fraction", col("count") / sum("count").over())
.withColumn("Percent", col("fraction") * 100 )
.drop("fraction")
}

用法:

使用 .transform() 应用函数:

var dateFinalDF = dateFinal.toDF(DateColumn).groupBy(DateColumn).count.transform(getCountPercent)
var usageFinalDF = usageFinal.toDF(UsageColumn).groupBy(UsageColumn).count.transform(getCountPercent)

关于scala - 每个列值的 Spark 计数和百分比异常处理和加载到 Hive DB,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/54350261/

29 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com