- android - RelativeLayout 背景可绘制重叠内容
- android - 如何链接 cpufeatures lib 以获取 native android 库?
- java - OnItemClickListener 不起作用,但 OnLongItemClickListener 在自定义 ListView 中起作用
- java - Android 文件转字符串
据我了解,集群中的RDD中的数据存在多份副本,这样当某个节点出现故障时,程序可以恢复。然而,在失败的可能性可以忽略不计的情况下,在 RDD 中拥有多个数据副本在内存方面的成本很高。那么,我的问题是,Spark中是否有一个参数可以用来降低RDD的复制因子?
最佳答案
首先,请注意 Spark 不会自动缓存所有 RDD
,这仅仅是因为应用程序可能会创建许多 RDD
,并且并非所有这些都将被重用。您必须对它们调用 .persist()
或 .cache()
。
你可以设置你想要持久化一个RDD
的存储级别myRDD.persist(StorageLevel.MEMORY_AND_DISK)
。 .cache()
是 .persist(StorageLevel.MEMORY_ONLY)
的简写。
对于 Java 或 Scala 中的 RDD
,persist
的默认存储级别确实是 StorageLevel.MEMORY_ONLY
——但如果您正在创建,则通常会有所不同DStream
(请参阅您的 DStream
构造函数 API 文档)。如果您使用的是 Python,则为 StorageLevel.MEMORY_ONLY_SER
。
doc详细介绍了一些存储级别及其含义,但它们基本上是一种配置速记,用于将 Spark 指向扩展 StorageLevel
class 的对象。 .因此,您可以定义自己的复制因子,最高可达 40。
请注意,在各种预定义的存储级别中,有些保留 RDD
的单个副本。事实上,所有那些名称后缀没有 _2
的都是这样(NONE
除外):
这是他们使用的每个介质一个副本,当然,如果您想要一个整体的副本,则必须选择单一介质存储级别。
关于java - 有没有办法改变 Spark 中 RDD 的复制因子?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/31624622/
目前正在学习 Spark 的类(class)并了解到执行者的定义: Each executor will hold a chunk of the data to be processed. Thisc
阅读了有关 http://spark.apache.org/docs/0.8.0/cluster-overview.html 的一些文档后,我有一些问题想要澄清。 以 Spark 为例: JavaSp
Spark核心中的调度器与以下Spark Stack(来自Learning Spark:Lightning-Fast Big Data Analysis一书)中的Standalone Schedule
我想在 spark-submit 或 start 处设置 spark.eventLog.enabled 和 spark.eventLog.dir -all level -- 不要求在 scala/ja
我有来自 SQL Server 的数据,需要在 Apache Spark (Databricks) 中进行操作。 在 SQL Server 中,此表的三个键列使用区分大小写的 COLLATION 选项
所有这些有什么区别和用途? spark.local.ip spark.driver.host spark.driver.bind地址 spark.driver.hostname 如何将机器修复为 Sp
我有大约 10 个 Spark 作业,每个作业都会进行一些转换并将数据加载到数据库中。必须为每个作业单独打开和关闭 Spark session ,每次初始化都会耗费时间。 是否可以只创建一次 Spar
/Downloads/spark-3.0.1-bin-hadoop2.7/bin$ ./spark-shell 20/09/23 10:58:45 WARN Utils: Your hostname,
我是 Spark 的完全新手,并且刚刚开始对此进行更多探索。我选择了更长的路径,不使用任何 CDH 发行版安装 hadoop,并且我从 Apache 网站安装了 Hadoop 并自己设置配置文件以了解
TL; 博士 Spark UI 显示的内核和内存数量与我在使用 spark-submit 时要求的数量不同 更多细节: 我在独立模式下运行 Spark 1.6。 当我运行 spark-submit 时
spark-submit 上的文档说明如下: The spark-submit script in Spark’s bin directory is used to launch applicatio
关闭。这个问题是opinion-based .它目前不接受答案。 想改善这个问题吗?更新问题,以便可以通过 editing this post 用事实和引文回答问题. 6 个月前关闭。 Improve
我想了解接收器如何在 Spark Streaming 中工作。根据我的理解,将有一个接收器任务在执行器中运行,用于收集数据并保存为 RDD。当调用 start() 时,接收器开始读取。需要澄清以下内容
有没有办法在不同线程中使用相同的 spark 上下文并行运行多个 spark 作业? 我尝试使用 Vertx 3,但看起来每个作业都在排队并按顺序启动。 如何让它在相同的 spark 上下文中同时运行
我们有一个 Spark 流应用程序,这是一项长期运行的任务。事件日志指向 hdfs 位置 hdfs://spark-history,当我们开始流式传输应用程序时正在其中创建 application_X
我们正在尝试找到一种加载 Spark (2.x) ML 训练模型的方法,以便根据请求(通过 REST 接口(interface))我们可以查询它并获得预测,例如http://predictor.com
Spark newb 问题:我在 spark-sql 中进行完全相同的 Spark SQL 查询并在 spark-shell . spark-shell版本大约需要 10 秒,而 spark-sql版
我正在使用 Spark 流。根据 Spark 编程指南(参见 http://spark.apache.org/docs/latest/programming-guide.html#accumulato
我正在使用 CDH 5.2。我可以使用 spark-shell 运行命令。 如何运行包含spark命令的文件(file.spark)。 有没有办法在不使用 sbt 的情况下在 CDH 5.2 中运行/
我使用 Elasticsearch 已经有一段时间了,但使用 Cassandra 的经验很少。 现在,我有一个项目想要使用 Spark 来处理数据,但我需要决定是否应该使用 Cassandra 还是
我是一名优秀的程序员,十分优秀!