gpt4 book ai didi

scala - 如何在 Spark 中处理大引用数据

转载 作者:可可西里 更新时间:2023-11-01 11:12:24 25 4
gpt4 key购买 nike

我有大数据集(比方说 4gb)用作处理另一个大数据集(100-200gb)的引用源我有 30 个执行程序的集群在 10 个节点上执行此操作。所以对于每个执行者,我都有自己的 jvm,对吗?每次它加载整个引用数据集。而且耗时长,效率低。是否有什么好的方法来处理这个问题?目前我在 s3 aws 上存储数据并使用 emr 运行所有内容。使用更优雅的存储,我可以在运行中查询,或者作为我的集群的一部分启动 redis 并推送数据而不是查询它可能是件好事?

UPD1:

  1. 平面数据是 S3 上按 128Mb 分区的 gzip 压缩 csv 文件。
  2. 它被读入数据集(合并是为了减少分区数量,以便在更少的节点上传播数据)

val df = sparkSession.sqlContext.read.format("com.databricks.spark.csv")
.option("header", "false")
.schema(schema)
.option("delimiter", ",")
.load(path)
.coalesce(3)
.as[SegmentConflationRef]

  1. 然后我需要将平面数据转换为有序的分组列表并放入一些键值存储,在这种情况下是内存映射。
    val data: Seq[SegmentConflationRef] = ds.collect()
val map = mutable.Map[String, Seq[SegmentConflationRef]]()
data.groupBy(_.source_segment_id).map(c => {
map += (c._1 -> c._2.sortBy(_.source_start_offset_m))
})
  1. 之后,我将从另一个数据集中进行查找。

所以在那种情况下,我想在每个执行者中复制引用 map 。一个问题是如何跨节点广播这么大的 map ,或者应该有什么更好的方法?可能不从一开始就使用 Spark 并在每个执行程序中从 hdfs 本地加载数据?

最佳答案

遗憾的是,Apache Spark 并不是解决任何问题的即插即用解决方案。

首先,您必须大致了解 Apache Spark 的工作原理。然后,您必须使用 Spark UI 来监控并查看您的流程为何不是最佳的。此页面上链接的官方文档通常是一个好的开始:

https://spark.apache.org/docs/latest/index.html

真正有用的是学习使用 Spark Web UI!一旦您理解了每条信息的含义——您就知道您的应用程序瓶颈在哪里。本文涵盖了 Spark Web UI 的基本组件:https://databricks.com/blog/2015/06/22/understanding-your-spark-application-through-visualization.html

关于scala - 如何在 Spark 中处理大引用数据,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/56014089/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com