gpt4 book ai didi

redis - 如何高效地将数据从flink管道写入redis

转载 作者:可可西里 更新时间:2023-11-01 11:06:12 28 4
gpt4 key购买 nike

我正在 Apache flink sql api 中构建管道。管道进行简单的投影查询。但是,我需要在查询之前和查询之后再写一次元组(恰好是每个元组中的一些元素)。事实证明,我用来写入 redis 的代码严重降低了性能。即 flink 以非常小的数据速率产生背压。我的代码有什么问题,我该如何改进。请有任何建议。

当我停止向redis写入前后性能都非常出色。这是我的管道代码:

public class QueryExample {
public static Long throughputCounterAfter=new Long("0");
public static void main(String[] args) {
int k_partitions = 10;
reamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);
env.setParallelism(5 * 32);
Properties props = new Properties();
props.setProperty("zookeeper.connect", "zookeeper-node-01:2181");
props.setProperty("bootstrap.servers", "kafka-node-01:9092,kafka-node-02:9092,kafka-node-03:9092");
// not to be shared with another job consuming the same topic
props.setProperty("group.id", "flink-group");
props.setProperty("enable.auto.commit","false");
FlinkKafkaConsumer011<String> purchasesConsumer=new FlinkKafkaConsumer011<String>("purchases",
new SimpleStringSchema(),
props);

DataStream<String> purchasesStream = env
.addSource(purchasesConsumer)
.setParallelism(Math.min(5 * 32, k_partitions));
DataStream<Tuple4<Integer, Integer, Integer, Long>> purchaseWithTimestampsAndWatermarks =
purchasesStream
.flatMap(new PurchasesParser())
.assignTimestampsAndWatermarks(new BoundedOutOfOrdernessTimestampExtractor<Tuple4<Integer, Integer, Integer, Long>>(Time.seconds(10)) {

@Override
public long extractTimestamp(Tuple4<Integer, Integer, Integer, Long> element) {
return element.getField(3);
}
});

Table purchasesTable = tEnv.fromDataStream(purchaseWithTimestampsAndWatermarks, "userID, gemPackID,price, rowtime.rowtime");
tEnv.registerTable("purchasesTable", purchasesTable);

purchaseWithTimestampsAndWatermarks.flatMap(new WriteToRedis());
Table result = tEnv.sqlQuery("SELECT userID, gemPackID, rowtime from purchasesTable");
DataStream<Tuple2<Boolean, Row>> queryResultAsDataStream = tEnv.toRetractStream(result, Row.class);
queryResultAsDataStream.flatMap(new WriteToRedis());
try {
env.execute("flink SQL");

} catch (Exception e) {
e.printStackTrace();
}
}




/**
* write to redis
*/
public static class WriteToRedis extends RichFlatMapFunction<Tuple4<Integer, Integer, Integer, Long>, String> {
RedisReadAndWrite redisReadAndWrite;

@Override
public void open(Configuration parameters) {
LOG.info("Opening connection with Jedis to {}", "redis");
this.redisReadAndWrite = new RedisReadAndWrite("redis",6379);

}

@Override
public void flatMap(Tuple4<Integer, Integer, Integer, Long> input, Collector<String> out) throws Exception {
this.redisReadAndWrite.write(input.f0+":"+input.f3+"","time_seen", TimeUnit.NANOSECONDS.toMillis(System.nanoTime())+"");
}
}
}


public class RedisReadAndWrite {
private Jedis flush_jedis;

public RedisReadAndWrite(String redisServerName , int port) {
flush_jedis=new Jedis(redisServerName,port);
}


public void write(String key,String field, String value) {
flush_jedis.hset(key,field,value);

}
}

附加部分:我尝试了第二个实现过程函数,该函数使用 Jedis 批量写入 toredis。但是我收到以下错误。 org.apache.flink.runtime.client.JobExecutionException:redis.clients.jedis.exceptions.JedisConnectionException:java.net.SocketException:套接字未连接。我试着减少批处理消息的数量,但过了一会儿我仍然遇到错误。

下面是流程函数的实现:

/** * 使用进程函数写入redis */

public static class WriteToRedisAfterQueryProcessFn extends ProcessFunction<Tuple2<Boolean, Row>, String> {
Long timetoFlush;
@Override
public void open(Configuration parameters) {
flush_jedis=new Jedis("redis",6379,1800);
p = flush_jedis.pipelined();
this.timetoFlush=System.currentTimeMillis()-initialTime;
}

@Override
public void processElement(Tuple2<Boolean, Row> input, Context context, Collector<String> collector) throws Exception {
p.hset(input.f1.getField(0)+":"+new Instant(input.f1.getField(2)).getMillis()+"","time_updated",TimeUnit.NANOSECONDS.toMillis(System.nanoTime())+"");
throughputAccomulationcount++;
System.out.println(throughputAccomulationcount);
if(throughputAccomulationcount==50000){
throughputAccomulationcount=0L;
p.sync();
}
}
}

最佳答案

毫无疑问,您遇到的性能不佳是因为您正在为每次写入向 redis 发出同步请求。 @kkrugler 已经提到了异步 i/o,这是针对这种情况的常见补救措施。这将需要切换到支持异步操作的 redis 客户端之一。

另一种在使用外部服务时常用的解决方案是将写入组批处理在一起。使用绝地武士,您可以使用 pipelining .例如,您可以将 WriteToRedis RichFlatMapFunction 替换为 ProcessFunction,该 ProcessFunction 以一定大小的批处理对 Redis 进行流水线写入,并根据需要依赖超时来刷新其缓冲区。您可以使用 Flink 的 ListState 作为缓冲区。

关于redis - 如何高效地将数据从flink管道写入redis,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/53947481/

28 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com