- android - RelativeLayout 背景可绘制重叠内容
- android - 如何链接 cpufeatures lib 以获取 native android 库?
- java - OnItemClickListener 不起作用,但 OnLongItemClickListener 在自定义 ListView 中起作用
- java - Android 文件转字符串
我目前在使用 scikit 学习库中的 GridSearchCV 方法时遇到问题。我已经为此苦苦挣扎了一个星期,而且似乎还无法解决。当调用它来优化 C 参数上的线性 SVM 时,它会一直卡住。奇怪的是,它不仅在分配 n_jobs=-1 时发生,而且在分配 1 个 n_jobs 时也会发生,所以我不认为多处理是特别的问题。此外,当我给它一个 X 形状数组 (2448, 1024) 时它工作正常,但当我给它一个形状数组 (5202, 1024) 时它完全卡住。
我提供给它的数据: float64 numpy 形状数组,从 (2448, 1024) 到 (7956, 1024) 都可以正常工作
我已经尝试过的事情:
__name__ == '__main__'
block ,如 https://github.com/scikit-learn/scikit-learn/issues/2889#issuecomment-37311446 中的建议我无法按照 https://github.com/dmlc/xgboost/issues/2163#issuecomment-314524070 中的建议运行以下代码因为我在 Windows 上运行我的代码。
from multiprocessing import pool, get_context
forkserver = get_context('forkserver')
p = forkserver.Pool()
注意事项:我用 f1 函数拟合它,而不是默认精度函数,这可能是一个问题,如这些线程所示:
下面是一些代码片段:
from sklearn.externals.joblib import parallel_backend
scaler = StandardScaler()
X = scaler.fit_transform(fv_train.data) #traininig samples
y = fv_train.axes[0] #class labels
X_train, X_valid, y_train, y_valid = train_test_split(X, y, test_size = 0.1, train_size = 0.9)
clf = SVC(kernel = 'linear', probability=True)
scoring = ['f1']
C_range = np.linspace(start=1000, stop=10000, num=4, endpoint = True)
param_grid = dict(C = C_range)
grid = GridSearchCV(clf, param_grid = param_grid, scoring = scoring, cv = 3,
refit = 'f1', verbose = 42, n_jobs=-1, pre_dispatch=3)
with parallel_backend('threading'):
grid.fit(X_train, y_train)
最佳答案
尝试在 __name__ == '__main__'
中指定您的代码,从 Windows 命令行运行它,但不要使用 parallel_backend 语句。使用 n_jobs
指定 GridSearhCV 应该自行处理多处理。
clf = SVC(kernel = 'linear', probability=True)
scoring = ['f1']
param_grid = {'C': np.linspace(start=1000, stop=10000, num=4, endpoint = True)}
grid = GridSearchCV(clf, param_grid = param_grid, scoring = scoring, cv = 3,
refit = 'f1', verbose = 42, n_jobs=-1, pre_dispatch=3)
grid.fit(X_train, y_train)
打开您的 Windows 任务管理器,看看运行时发生了什么。查看您的 CPU 百分比、RAM 并查看 Windows 进程。通常你想看到的是你的 CPU 变得非常高,你应该在进程列表中看到几个名为 Python 的进程。它可能会卡住,因为您使用了完整的 CPU。
另一种可能性是 n_jobs 还没有为 f1 评分实现。您可以尝试在没有 n_jobs 语句的情况下运行您的代码,如下所示:
clf = SVC(kernel = 'linear', probability=True)
scoring = ['f1']
param_grid = {'C': np.linspace(start=1000, stop=10000, num=4, endpoint = True)}
grid = GridSearchCV(clf, param_grid = param_grid, scoring = scoring, cv = 3,
refit = 'f1', verbose = 42, pre_dispatch=3)
grid.fit(X_train, y_train)
关于python - GridSearchCV 在任何 n_jobs 的窗口上卡住,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/52684331/
考虑以下网格搜索: grid = GridSearchCV(clf, parameters, n_jobs =-1, iid=True, cv =5) grid_fit = grid.fit(X_tr
我正在做一个 GridSearchCV,我已经监控了核心的百分比,并且我看到当我运行一个简单的神经网络时,4 个核心具有相同的百分比,但是当网格搜索 cv (n_jobs = 1) 开始时在情节的线条
我在带有 RBF 内核的 SVM 上进行了网格搜索 + 交叉验证,以使用类 GridShearchCV 找到参数 C 和 gamma 的最佳值。现在我想以表格格式获得结果,例如 C/gamma 1e-
我正在尝试为 sklearn 的 GridSearchCV 结果生成热图。我喜欢的东西sklearn-evaluation是因为生成热图真的很容易。但是,我遇到了一个问题。当我将参数设为 None 时
我想提高这个的参数GridSearchCV 对于 随机森林回归器 . def Grid_Search_CV_RFR(X_train, y_train): from sklearn.model_
我正在尝试设置 GridSearchCV 的实例来确定哪一组超参数将产生最低的平均绝对误差。 This scikit documentation表示分数指标可以在创建 GridSearchCV 时传递
当使用网格搜索在 python 中使用此函数 GridSearchCV() 进行分类器时,假设我们有一个参数区间来调整形式 1 到 100,我们如何能够指定它(1:100 不起作用)? p> 最佳答案
我是机器学习的新手,并且一直坚持这个。 当我尝试在线性模型中实现多项式回归时,例如使用多个次数的多项式范围(1,10)并获得不同的 MSE。我实际上使用 GridsearchCV 方法来查找多项式的最
我想在一系列 alpha(拉普拉斯平滑参数)上使用 GridSearchCV 来检查哪个为伯努利朴素贝叶斯模型提供了最佳准确度。 def binarize_pixels(data, threshold
使用 sklearn 在随机森林分类器上运行网格搜索。这个运行的时间比我想象的要长,我正在尝试估计这个过程还剩多少时间。我认为它的总拟合次数是 3*3*3*3*5 = 405。 clf = Rando
我正在尝试使用网格搜索找出要在 PCA 中使用的 n_components 的最佳值: from sklearn.decomposition import PCA from sklearn.grid_
我正在尝试 GridsearchCV 但我希望在 param grid 中有一些异常(exception)。这是我的网格搜索代码: from sklearn.model_selection impor
我很难找出 GridSearchCV 中的参数 return_train_score。来自docs : return_train_score : boolean, optional If
我必须进行多类分类 (3)。我使用 GridSearchCV 为我的分类器搜索最佳参数。 但我有一个不平衡的 x_train(和 x_test):0 有 3079 个实例,1 有 12 个实例,3 有
有没有办法访问在 GridSearchCV 过程中计算的预测值? 我希望能够根据实际值(来自测试/验证集)绘制预测的 y 值。 网格搜索完成后,我可以使用 将其与其他一些数据相匹配 ypred =
我正在使用GridsearchCV来调整超参数,现在我想在训练和验证步骤中进行最小-最大Normalization(StandardScaler())。但我认为我不能做到这一点。 问题是: 如果我对整
我正在使用 scikit learn 进行多标签分类。我使用 RandomForestClassifier 作为基本估计器。我想使用 GridSearchCV 优化每个标签的参数。目前我正在按以下方式
好的,我只想说,我对 SciKit-Learn 和数据科学完全陌生。但这是问题所在,也是我目前对该问题的研究。代码在底部。 总结 我正尝试使用 BernoulliRBM 进行类型识别(例如数字),并尝
我正在使用 GridSearchCV ,并且在每次迭代之后,我想将 clf.cv_results_ 属性保存到一个文件中(以防进程在中间崩溃)。 我尝试寻找解决方案,但就是想不通。 我们将不胜感激。
我正在尝试自学如何在基本的多层神经网络中对神经元的数量进行网格搜索。我正在使用 Python 的 GridSearchCV 和 KerasClasifier 以及 Keras。下面的代码适用于其他数据
我是一名优秀的程序员,十分优秀!