- android - RelativeLayout 背景可绘制重叠内容
- android - 如何链接 cpufeatures lib 以获取 native android 库?
- java - OnItemClickListener 不起作用,但 OnLongItemClickListener 在自定义 ListView 中起作用
- java - Android 文件转字符串
我有一个 sql 查询,用于计算复杂查询的结果数。当限制为 20 个结果时,实际的选择查询非常快,但经过大量优化后,计数版本在我当前的表上大约需要 4.5 秒。
如果我删除网站标签和画廊标签上的两个连接和 where 子句,查询将在 1.5 秒内执行。如果我创建 3 个单独的查询 - 一个选择付费网站,一个选择名称,一个将所有内容放在一起 - 我可以将查询缩短到 0.6 秒,这仍然不够好。这也将迫使我使用存储过程,因为我将不得不在 Hibernate 中进行总共 4 次查询。
对于“原样”查询,这里有一些信息:
Handler_read_key 为 1746669
Handler_read_next 为 1546324
gallery 表有 40,000 行
站点表有 900 行
名称表有 800 行
标签表有3560行
我对 MySQL 和调优还很陌生,我在以下方面有索引:
我希望将此查询缩短到 0.1 毫秒。
SELECT count(distinct gallery.id)
from gallery gallery
inner join
site site
on gallery.site_id = site.id
inner join
site_to_tag p2t
on site.id = p2t.site_id
inner join
tag site_tag
on p2t.tag_id = site_tag.id
inner join
gallery_to_name g2mn
on gallery.id = g2mn.gallery_id
inner join
name name
on g2mn.name_id = name.id
inner join
gallery_to_tag g2t
on gallery.id = g2t.gallery_id
inner join
tag tag
on g2t.tag_id = tag.id
where
gallery.published = true and (
name.value LIKE 'sometext%' or
tag.term = 'sometext' or
site.`name` like 'sometext%' or
site_tag.term = 'sometext'
)
解释数据:
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+--------------+--------+-------------------------------------------------------------------+--------------------+---------+-------------------------------------------+------+------------------------------------+
| 1 | SIMPLE | site | index | PRIMARY,nameIndex | nameIndex | 258 | NULL | 950 | Using index; Using temporary |
| 1 | SIMPLE | gallery | ref | PRIMARY,publishedIndex,FKF44C775296EECE37,publishedSiteIdIndex | FKF44C775296EECE37 | 9 | production.site.id | 20 | Using where |
| 1 | SIMPLE | g2mn | ref | PRIMARY,FK3EFFD7F8AFAD7A5E,FK3EFFD7F832C04188 | FK3EFFD7F8AFAD7A5E | 8 | production.gallery.id | 1 | Using index; Distinct |
| 1 | SIMPLE | name | eq_ref | PRIMARY,valueIndex | PRIMARY | 8 | production.g2mn.name_id | 1 | Distinct |
| 1 | SIMPLE | g2t | ref | PRIMARY,FK3DDB4D63AFAD7A5E,FK3DDB4D63E210FBA6 | FK3DDB4D63AFAD7A5E | 8 | production.g2mn.gallery_id | 2 | Using where; Using index; Distinct |
| 1 | SIMPLE | tag | eq_ref | PRIMARY,termIndex | PRIMARY | 8 | production.g2t.tag_id | 1 | Distinct |
| 1 | SIMPLE | p2t | ref | PRIMARY,FK29424AB796EECE37,FK29424AB7E210FBA6 | PRIMARY | 8 | production.gallery.site_id | 3 | Using where; Using index; Distinct |
| 1 | SIMPLE | site_tag | eq_ref | PRIMARY,termIndex | PRIMARY | 8 | production.p2t.tag_id | 1 | Using where; Distinct |
+----+-------------+--------------+--------+-------------------------------------------------------------------+--------------------+---------+-------------------------------------------+------+------------------------------------+
个人计数速度:
[SQL] select count(*) from gallery;
Affected rows: 0
Time: 0.014ms
Results: 40385
[SQL]
select count(*) from gallery_to_name;
Affected rows: 0
Time: 0.012ms
Results: 35615
[SQL]
select count(*) from gallery_to_tag;
Affected rows: 0
Time: 0.055ms
Results: 165104
[SQL]
select count(*) from tag;
Affected rows: 0
Time: 0.002ms
Results: 3560
[SQL]
select count(*) from site;
Affected rows: 0
Time: 0.001ms
Results: 901
[SQL]
select count(*) from site_to_tag;
Affected rows: 0
Time: 0.003ms
Results: 7026
最佳答案
我在本文末尾包含了我的测试架构和用于生成测试数据的脚本。我用过 SQL_NO_CACHE
防止 MySQL 缓存查询结果的选项 - 这仅用于测试,最终应该被删除。
这个和Donnie提出的思路差不多,不过我稍微整理了一下。如果我正确理解了联接,则无需在每个选择中重复所有联接,因为每个联接实际上都独立于其他联接。原始的 WHERE
子句规定 gallery.published
必须为真,然后是一系列由 OR
连接的 4 个条件。因此,每个查询都可以单独执行。以下是四个连接:
gallery <--> gallery_to_name <--> name
gallery <--> gallery_to_tag <--> tag
gallery <--> site
gallery <--> site <--> site_to_tag <--> tag
因为 gallery
包含 site_id
,在这种情况下,不需要通过 site
表进行中间连接。因此,最后一个连接可以简化为:
gallery <--> site_to_tag <--> tag
分别运行每个 SELECT
,并使用 UNION
组合结果,速度非常快。这里的结果假定表结构和索引显示在本文末尾:
SELECT SQL_NO_CACHE COUNT(id) AS matches FROM (
(SELECT g.id
FROM gallery AS g
INNER JOIN site AS s ON s.id = g.site_id
WHERE g.published = TRUE AND s.name LIKE '3GRD%')
UNION
(SELECT g.id
FROM gallery AS g
INNER JOIN gallery_to_name AS g2n ON g2n.gallery_id = g.id
INNER JOIN name AS n ON n.id = g2n.name_id
WHERE g.published = TRUE AND n.value LIKE '3GRD%')
UNION
(SELECT g.id
FROM gallery AS g
INNER JOIN gallery_to_tag AS g2t ON g2t.gallery_id = g.id
INNER JOIN tag AS gt ON gt.id = g2t.tag_id
WHERE g.published = TRUE AND gt.term = '3GRD')
UNION
(SELECT g.id
FROM gallery AS g
INNER JOIN site_to_tag AS s2t ON s2t.site_id = g.site_id
INNER JOIN tag AS st ON st.id = s2t.tag_id
WHERE g.published = TRUE AND st.term = '3GRD')
) AS totals;
+---------+
| matches |
+---------+
| 99 |
+---------+
1 row in set (0.00 sec)
速度确实因搜索条件而异。在以下示例中,每个表使用了不同的搜索值,LIKE 运算符必须做更多的工作,因为现在每个表都有更多的潜在匹配项:
SELECT SQL_NO_CACHE COUNT(id) AS matches FROM (
(SELECT g.id
FROM gallery AS g
INNER JOIN site AS s ON s.id = g.site_id
WHERE g.published = TRUE AND s.name LIKE '3H%')
UNION
(SELECT g.id
FROM gallery AS g
INNER JOIN gallery_to_name AS g2n ON g2n.gallery_id = g.id
INNER JOIN name AS n ON n.id = g2n.name_id
WHERE g.published = TRUE AND n.value LIKE '3G%')
UNION
(SELECT g.id
FROM gallery AS g
INNER JOIN gallery_to_tag AS g2t ON g2t.gallery_id = g.id
INNER JOIN tag AS gt ON gt.id = g2t.tag_id
WHERE g.published = TRUE AND gt.term = '3IDP')
UNION
(SELECT g.id
FROM gallery AS g
INNER JOIN site_to_tag AS s2t ON s2t.site_id = g.site_id
INNER JOIN tag AS st ON st.id = s2t.tag_id
WHERE g.published = TRUE AND st.term = '3OJX')
) AS totals;
+---------+
| matches |
+---------+
| 12505 |
+---------+
1 row in set (0.24 sec)
这些结果优于使用多个连接的查询:
SELECT SQL_NO_CACHE COUNT(DISTINCT g.id) AS matches
FROM gallery AS g
INNER JOIN gallery_to_name AS g2n ON g2n.gallery_id = g.id
INNER JOIN name AS n ON n.id = g2n.name_id
INNER JOIN gallery_to_tag AS g2t ON g2t.gallery_id = g.id
INNER JOIN tag AS gt ON gt.id = g2t.tag_id
INNER JOIN site AS s ON s.id = g.site_id
INNER JOIN site_to_tag AS s2t ON s2t.site_id = s.id
INNER JOIN tag AS st ON st.id = s2t.tag_id
WHERE g.published = TRUE AND (
gt.term = '3GRD' OR
st.term = '3GRD' OR
n.value LIKE '3GRD%' OR
s.name LIKE '3GRD%');
+---------+
| matches |
+---------+
| 99 |
+---------+
1 row in set (2.62 sec)
SELECT SQL_NO_CACHE COUNT(DISTINCT g.id) AS matches
FROM gallery AS g
INNER JOIN gallery_to_name AS g2n ON g2n.gallery_id = g.id
INNER JOIN name AS n ON n.id = g2n.name_id
INNER JOIN gallery_to_tag AS g2t ON g2t.gallery_id = g.id
INNER JOIN tag AS gt ON gt.id = g2t.tag_id
INNER JOIN site AS s ON s.id = g.site_id
INNER JOIN site_to_tag AS s2t ON s2t.site_id = s.id
INNER JOIN tag AS st ON st.id = s2t.tag_id
WHERE g.published = TRUE AND (
gt.term = '3IDP' OR
st.term = '3OJX' OR
n.value LIKE '3G%' OR
s.name LIKE '3H%');
+---------+
| matches |
+---------+
| 12505 |
+---------+
1 row in set (3.17 sec)
架构
id 列的索引加上 site.name
、name.value
和 tag.term
很重要:
DROP SCHEMA IF EXISTS `egervari`;
CREATE SCHEMA IF NOT EXISTS `egervari`;
USE `egervari`;
-- -----------------------------------------------------
-- Table `site`
-- -----------------------------------------------------
DROP TABLE IF EXISTS `site` ;
CREATE TABLE IF NOT EXISTS `site` (
`id` INT UNSIGNED NOT NULL AUTO_INCREMENT ,
`name` VARCHAR(255) NOT NULL ,
INDEX `name` (`name` ASC) ,
PRIMARY KEY (`id`) )
ENGINE = InnoDB;
-- -----------------------------------------------------
-- Table `gallery`
-- -----------------------------------------------------
DROP TABLE IF EXISTS `gallery` ;
CREATE TABLE IF NOT EXISTS `gallery` (
`id` INT UNSIGNED NOT NULL AUTO_INCREMENT ,
`site_id` INT UNSIGNED NOT NULL ,
`published` TINYINT(1) NOT NULL DEFAULT 0 ,
PRIMARY KEY (`id`) ,
INDEX `fk_gallery_site` (`site_id` ASC) ,
CONSTRAINT `fk_gallery_site`
FOREIGN KEY (`site_id` )
REFERENCES `site` (`id` )
ON DELETE CASCADE
ON UPDATE CASCADE)
ENGINE = InnoDB;
-- -----------------------------------------------------
-- Table `name`
-- -----------------------------------------------------
DROP TABLE IF EXISTS `name` ;
CREATE TABLE IF NOT EXISTS `name` (
`id` INT UNSIGNED NOT NULL AUTO_INCREMENT ,
`value` VARCHAR(255) NOT NULL ,
INDEX `value` (`value` ASC) ,
PRIMARY KEY (`id`) )
ENGINE = InnoDB;
-- -----------------------------------------------------
-- Table `tag`
-- -----------------------------------------------------
DROP TABLE IF EXISTS `tag` ;
CREATE TABLE IF NOT EXISTS `tag` (
`id` INT UNSIGNED NOT NULL AUTO_INCREMENT ,
`term` VARCHAR(255) NOT NULL ,
INDEX `term` (`term` ASC) ,
PRIMARY KEY (`id`) )
ENGINE = InnoDB;
-- -----------------------------------------------------
-- Table `gallery_to_name`
-- -----------------------------------------------------
DROP TABLE IF EXISTS `gallery_to_name` ;
CREATE TABLE IF NOT EXISTS `gallery_to_name` (
`gallery_id` INT UNSIGNED NOT NULL ,
`name_id` INT UNSIGNED NOT NULL ,
PRIMARY KEY (`gallery_id`, `name_id`) ,
INDEX `fk_gallery_to_name_gallery` (`gallery_id` ASC) ,
INDEX `fk_gallery_to_name_name` (`name_id` ASC) ,
CONSTRAINT `fk_gallery_to_name_gallery`
FOREIGN KEY (`gallery_id` )
REFERENCES `gallery` (`id` )
ON DELETE CASCADE
ON UPDATE CASCADE,
CONSTRAINT `fk_gallery_to_name_name`
FOREIGN KEY (`name_id` )
REFERENCES `name` (`id` )
ON DELETE CASCADE
ON UPDATE CASCADE)
ENGINE = InnoDB;
-- -----------------------------------------------------
-- Table `gallery_to_tag`
-- -----------------------------------------------------
DROP TABLE IF EXISTS `gallery_to_tag` ;
CREATE TABLE IF NOT EXISTS `gallery_to_tag` (
`gallery_id` INT UNSIGNED NOT NULL ,
`tag_id` INT UNSIGNED NOT NULL ,
PRIMARY KEY (`gallery_id`, `tag_id`) ,
INDEX `fk_gallery_to_tag_gallery` (`gallery_id` ASC) ,
INDEX `fk_gallery_to_tag_tag` (`tag_id` ASC) ,
CONSTRAINT `fk_gallery_to_tag_gallery`
FOREIGN KEY (`gallery_id` )
REFERENCES `gallery` (`id` )
ON DELETE CASCADE
ON UPDATE CASCADE,
CONSTRAINT `fk_gallery_to_tag_tag`
FOREIGN KEY (`tag_id` )
REFERENCES `tag` (`id` )
ON DELETE CASCADE
ON UPDATE CASCADE)
ENGINE = InnoDB;
-- -----------------------------------------------------
-- Table `site_to_tag`
-- -----------------------------------------------------
DROP TABLE IF EXISTS `site_to_tag` ;
CREATE TABLE IF NOT EXISTS `site_to_tag` (
`site_id` INT UNSIGNED NOT NULL ,
`tag_id` INT UNSIGNED NOT NULL ,
PRIMARY KEY (`site_id`, `tag_id`) ,
INDEX `fk_site_to_tag_site` (`site_id` ASC) ,
INDEX `fk_site_to_tag_tag` (`tag_id` ASC) ,
CONSTRAINT `fk_site_to_tag_site`
FOREIGN KEY (`site_id` )
REFERENCES `site` (`id` )
ON DELETE CASCADE
ON UPDATE CASCADE,
CONSTRAINT `fk_site_to_tag_tag`
FOREIGN KEY (`tag_id` )
REFERENCES `tag` (`id` )
ON DELETE CASCADE
ON UPDATE CASCADE)
ENGINE = InnoDB;
测试数据
这会填充 site
900 行,tag
3560 行,name
800 行,gallery
40,000 行,并将条目插入链接表:
DELIMITER //
DROP PROCEDURE IF EXISTS populate//
CREATE PROCEDURE populate()
BEGIN
DECLARE i INT DEFAULT 0;
WHILE i < 900 DO
INSERT INTO site (name) VALUES (CONV(i + 1 * 10000, 20, 36));
SET i = i + 1;
END WHILE;
SET i = 0;
WHILE i < 3560 DO
INSERT INTO tag (term) VALUES (CONV(i + 1 * 10000, 20, 36));
INSERT INTO site_to_tag (site_id, tag_id) VALUES ( (i MOD 900) + 1, i + 1 );
SET i = i + 1;
END WHILE;
SET i = 0;
WHILE i < 800 DO
INSERT INTO name (value) VALUES (CONV(i + 1 * 10000, 20, 36));
SET i = i + 1;
END WHILE;
SET i = 0;
WHILE i < 40000 DO
INSERT INTO gallery (site_id, published) VALUES ( (i MOD 900) + 1, i MOD 2 );
INSERT INTO gallery_to_name (gallery_id, name_id) VALUES ( i + 1, (i MOD 800) + 1 );
INSERT INTO gallery_to_tag (gallery_id, tag_id) VALUES ( i + 1, (i MOD 3560) + 1 );
SET i = i + 1;
END WHILE;
END;
//
DELIMITER ;
CALL populate();
关于sql - 如何调整表包含 30,000 多行的 7 表连接 MySQL 计数查询?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/3151410/
我有一台 MySQL 服务器和一台 PostgreSQL 服务器。 需要从多个表中复制或重新插入一组数据 MySQL 流式传输/同步到 PostgreSQL 表。 这种复制可以基于时间(Sync)或事
如果两个表的 id 彼此相等,我尝试从一个表中获取数据。这是我使用的代码: SELECT id_to , email_to , name_to , status_to
我有一个 Excel 工作表。顶行对应于列名称,而连续的行每行代表一个条目。 如何将此 Excel 工作表转换为 SQL 表? 我使用的是 SQL Server 2005。 最佳答案 这取决于您使用哪
我想合并两个 Django 模型并创建一个模型。让我们假设我有第一个表表 A,其中包含一些列和数据。 Table A -------------- col1 col2 col3 col
我有两个表:table1,table2,如下所示 table1: id name 1 tamil 2 english 3 maths 4 science table2: p
关闭。此题需要details or clarity 。目前不接受答案。 想要改进这个问题吗?通过 editing this post 添加详细信息并澄清问题. 已关闭 1 年前。 Improve th
下面两个语句有什么区别? newTable = orginalTable 或 newTable.data(originalTable) 我怀疑 .data() 方法具有性能优势,因为它在标准 AX 中
我有一个表,我没有在其中显式定义主键,它并不是真正需要的功能......但是一位同事建议我添加一个列作为唯一主键以随着数据库的增长提高性能...... 谁能解释一下这是如何提高性能的? 没有使用索引(
如何将表“产品”中的产品记录与其不同表“图像”中的图像相关联? 我正在对产品 ID 使用自动增量。 我觉得不可能进行关联,因为产品 ID 是自动递增的,因此在插入期间不可用! 如何插入新产品,获取产品
我有一个 sql 表,其中包含关键字和出现次数,如下所示(尽管出现次数并不重要): ____________ dog | 3 | ____________ rat | 7 | ____
是否可以使用目标表中的LAST_INSERT_ID更新源表? INSERT INTO `target` SELECT `a`, `b` FROM `source` 目标表有一个自动增量键id,我想将其
我正在重建一个搜索查询,因为它在“我看到的”中变得多余,我想知道什么 (albums_artists, artists) ( ) does in join? is it for boosting pe
以下是我使用 mysqldump 备份数据库的开关: /usr/bin/mysqldump -u **** --password=**** --single-transaction --databas
我试图获取 MySQL 表中的所有行并将它们放入 HTML 表中: Exam ID Status Assigned Examiner
如何查询名为 photos 的表中的所有记录,并知道当前用户使用单个查询将哪些结果照片添加为书签? 这是我的表格: -- -- Table structure for table `photos` -
我的网站都在 InnoDB 表上运行,目前为止运行良好。现在我想知道在我的网站上实时发生了什么,所以我将每个页面浏览量(页面、引荐来源网址、IP、主机名等)存储在 InnoDB 表中。每秒大约有 10
我在想我会为 mysql 准备两个表。一个用于存储登录信息,另一个用于存储送货地址。这是传统方式还是所有内容都存储在一张表中? 对于两个表...有没有办法自动将表 A 的列复制到表 B,以便我可以引用
我不是程序员,我从这个表格中阅读了很多关于如何解决我的问题的内容,但我的搜索效果不好 我有两张 table 表 1:成员 id*| name | surname -------------------
我知道如何在 ASP.NET 中显示真实表,例如 public ActionResult Index() { var s = db.StaffInfoDBSet.ToList(); r
我正在尝试运行以下查询: "insert into visits set source = 'http://google.com' and country = 'en' and ref = '1234
我是一名优秀的程序员,十分优秀!