gpt4 book ai didi

ios - VNCoreMLFeatureValueObservation 是否输出 softmax 概率?如果是这样,如何提取最高值?

转载 作者:可可西里 更新时间:2023-11-01 01:56:56 31 4
gpt4 key购买 nike

我正在尝试让我的第一个图像分类模型正常工作,但是,VNClassificationObservation 不工作,而VNCoreMLFeatureValueObservation 是。

这是关于我的模型的一些信息:

MLModelDescription: MLModelDescription inputDescriptionsByName: {

"input_1__0" = "input_1__0 : Image (Color, 299 x 299)";

} outputDescriptionsByName: {

"output_node0__0" = "output_node0__0 : MultiArray (MLMultiArrayDataTypeDouble, 43)";

} predictedFeatureName: (null)

根据文档:

VNClassificationObservation

This type of observation results from performing a VNCoreMLRequest image
analysis with a Core ML model whose role is classification (rather than
prediction or image-to-image processing).
Vision infers that an MLModel object is a classifier model if that model
predicts a single feature.
That is, the model's modelDescription object has a non-nil value for its
predictedFeatureName property.

起初我假设当文档说“预测”时,他们指的是具有值预测的回归类型模型。但现在我认为他们指的是 softmax 预测概率?因此 VNClassificationObservation 不输出 softmax 预测概率。

现在,

VNCoreMLFeatureValueObservation:

Overview
This type of observation results from performing a VNCoreMLRequest image analysis with a Core ML model whose role is prediction rather than classification or image-to-image processing.

Vision infers that an MLModel object is a predictor model if that model predicts multiple features. You can tell that a model predicts multiple features when its modelDescription object has a nil value for its predictedFeatureName property, or when it inserts its output in an outputDescriptionsByName dictionary.

我对措辞感到困惑。这是否意味着多输入多输出模型?不是分类,而是预测,也有点令人困惑,但我假设softmax probs 由于我得到的输出。

当我运行下面的代码时,我得到:

let request = VNCoreMLRequest(model: model) { [weak self] request, error in
guard let results = request.results as? [VNCoreMLFeatureValueObservation],
let topResult = results.first else {
fatalError("unexpected result type from VNCoreMLRequest")
DispatchQueue.main.async { [weak self] in

print("topResult!", topResult)

//print(model.debugDescription.outputDescriptionsByName)
}
}
let handler = VNImageRequestHandler(ciImage: image)

DispatchQueue.global(qos: .userInteractive).async {

do {

try handler.perform([request])

} catch {print(error)}

我得到了一堆值:

topResult! Optional(<VNCoreMLFeatureValueObservation: 
0x1c003f0c0> C99BC0A0-7722-4DDC-8FB8-C0FEB1CEEFA5 1 "MultiArray : Double 43
vector

[ 0.02323521859943867,0.03784361109137535,0.0327669121325016,0.02373981475830078,0.01920632272958755,0.01511944644153118,0.0268220379948616,0.00990589614957571,0.006585873663425446,0.02727104164659977,0.02337176166474819,0.0177282840013504,0.01582957617938519,0.01962342299520969,0.0335112139582634,0.01197215262800455,0.04638960584998131,0.0546870082616806,0.008390620350837708,0.02519697323441505,0.01038128975778818,0.02463733218610287,0.05725555866956711,0.02852404117584229,0.01987413503229618,0.02478211745619774,0.01224409975111485,0.03397252038121223,0.02300941571593285,0.02020683139562607,0.03740271925926208,0.01999092660844326,0.03210178017616272,0.02830206602811813,0.01122485008090734,0.01071082800626755,0.02285266295075417,0.01730070635676384,0.009790488518774509,0.01149104069918394,0.03331543132662773,0.01211327593773603,0.0193191897124052]" (1.000000))

如果这些确实是 softmax 概率,我将如何获取最大值的索引?我似乎无法使用 .count 或类似的数组方法。

我试着把它转换成一个数组,但是这两个都不起作用

let values  = topResult.featureValue as Array! (Can't convert...coercion)
let values = topResult as Array!

如果这些不是 softmax 值/概率,那么我会着手获得 概率。值。我正在尝试获取前 3 个 softmax 概率的索引。

谢谢。

!!!更新!!!!!!!!:

在函数内尝试: var localPrediction:字符串? 让 topResult = results.first?.featureValue.multiArrayValue

 DispatchQueue.main.async { () in
var max_value : Float32 = 0
for i in 0..<topResult!.count{
if max_value < topResult![i].floatValue{
max_value = topResult![i].floatValue
localPrediction = String(i)}

}

最佳答案

当您的模型是分类器时,即 NeuralNetworkClassifier在 mlmodel 文件中,则输出为 VNClassificationObservation对象。

当您的模型不是分类器时,即 NeuralNetworkNeuralNetworkRegressor那么输出是一个或多个 VNCoreMLFeatureValueObservation包含最后一层输出的对象。

因此,如果您期望 VNCoreMLFeatureValueObservation 中的 softmax 输出那么你需要确保你的模型有一个 softmax 作为它的最后一层。

要获取最大元素的索引和值,请使用:

func argmax(_ array: UnsafePointer<Double>, count: Int) -> (Int, Double) {
var maxValue: Double = 0
var maxIndex: vDSP_Length = 0
vDSP_maxviD(array, 1, &maxValue, &maxIndex, vDSP_Length(count))
return (Int(maxIndex), maxValue)
}

要使用它,首先要转换 MLMultiArray 的 dataPointerUnsafePointer<Double>然后调用argmax()功能:

let featurePointer = UnsafePointer<Double>(OpaquePointer(features.dataPointer))
let (maxIndex, maxValue) = argmax(featurePointer, 43)

关于ios - VNCoreMLFeatureValueObservation 是否输出 softmax 概率?如果是这样,如何提取最高值?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/51886316/

31 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com