- android - RelativeLayout 背景可绘制重叠内容
- android - 如何链接 cpufeatures lib 以获取 native android 库?
- java - OnItemClickListener 不起作用,但 OnLongItemClickListener 在自定义 ListView 中起作用
- java - Android 文件转字符串
我正在尝试为长距离远足路径优化 Mapbox View ,例如阿巴拉契亚小径或太平洋山脊小径。下面是一个示例,我手动调整了方向,展示了西类牙的 Senda Pirenáica:
给出感兴趣的区域、视口(viewport)和间距。我需要找到正确的中心、方位和缩放。
map.fitBounds
方法在这里对我没有帮助,因为它假设 pitch=0 和 bearing=0。
我查了一下,这似乎是 smallest surrounding rectangle 的变体。问题,但我遇到了一些额外的并发症:
FWIW 我也在使用 turf-js,它帮助我获得直线的凸包。
最佳答案
此解决方案导致在正确方位处显示的路径带有品红色梯形轮廓,显示目标“最紧梯形”以显示计算结果。来自顶 Angular 的额外线条显示了 map.center() 值所在的位置。
方法如下:
这个结果看起来像这样:
在此之后,我们想要围绕路径旋转梯形并找到梯形与点的最紧密拟合。为了测试最紧密的配合,旋转路径比旋转梯形更容易,所以我在这里采用了这种方法。我还没有在路径上实现“凸包”来最小化要旋转的点数,但这可以作为优化步骤添加。
为了获得最紧密的配合,第一步是移动 map.center() 以便路径位于 View 的“背面”。这是截锥体中空间最大的地方,因此很容易在那里操作它:
接下来,我们测量 Angular 梯形墙与路径中每个点之间的距离,保存左右两侧最近的点。然后,我们根据这些距离水平平移 View ,使路径在 View 中居中,然后缩放 View 以消除两侧的空间,如下面的绿色梯形所示:
用于获得此“最紧密匹配”的比例为我们提供了关于这是否是最佳路径 View 的排名。然而,这个 View 在视觉上可能不是最好的,因为我们将路径推到 View 的后面来确定排名。相反,我们现在调整 View 以将路径放置在 View 的垂直中心,并相应地放大 View 三 Angular 形。这为我们提供了所需的洋红色“最终” View :
最后,这个过程对每一度都完成,最小比例值决定获胜方位,我们从那里获取相关的比例和中心位置。
mapboxgl.accessToken = 'pk.eyJ1IjoiZm1hY2RlZSIsImEiOiJjajJlNWMxenowNXU2MzNudmkzMndwaGI3In0.ALOYWlvpYXnlcH6sCR9MJg';
var map;
var myPath = [
[-122.48369693756104, 37.83381888486939],
[-122.48348236083984, 37.83317489144141],
[-122.48339653015138, 37.83270036637107],
[-122.48356819152832, 37.832056363179625],
[-122.48404026031496, 37.83114119107971],
[-122.48404026031496, 37.83049717427869],
[-122.48348236083984, 37.829920943955045],
[-122.48356819152832, 37.82954808664175],
[-122.48507022857666, 37.82944639795659],
[-122.48610019683838, 37.82880236636284],
[-122.48695850372314, 37.82931081282506],
[-122.48700141906738, 37.83080223556934],
[-122.48751640319824, 37.83168351665737],
[-122.48803138732912, 37.832158048267786],
[-122.48888969421387, 37.83297152392784],
[-122.48987674713133, 37.83263257682617],
[-122.49043464660643, 37.832937629287755],
[-122.49125003814696, 37.832429207817725],
[-122.49163627624512, 37.832564787218985],
[-122.49223709106445, 37.83337825839438],
[-122.49378204345702, 37.83368330777276]
];
var myPath2 = [
[-122.48369693756104, 37.83381888486939],
[-122.49378204345702, 37.83368330777276]
];
function addLayerToMap(name, points, color, width) {
map.addLayer({
"id": name,
"type": "line",
"source": {
"type": "geojson",
"data": {
"type": "Feature",
"properties": {},
"geometry": {
"type": "LineString",
"coordinates": points
}
}
},
"layout": {
"line-join": "round",
"line-cap": "round"
},
"paint": {
"line-color": color,
"line-width": width
}
});
}
function Mercator2ll(mercX, mercY) {
var rMajor = 6378137; //Equatorial Radius, WGS84
var shift = Math.PI * rMajor;
var lon = mercX / shift * 180.0;
var lat = mercY / shift * 180.0;
lat = 180 / Math.PI * (2 * Math.atan(Math.exp(lat * Math.PI / 180.0)) - Math.PI / 2.0);
return [ lon, lat ];
}
function ll2Mercator(lon, lat) {
var rMajor = 6378137; //Equatorial Radius, WGS84
var shift = Math.PI * rMajor;
var x = lon * shift / 180;
var y = Math.log(Math.tan((90 + lat) * Math.PI / 360)) / (Math.PI / 180);
y = y * shift / 180;
return [ x, y ];
}
function convertLL2Mercator(points) {
var m_points = [];
for(var i=0;i<points.length;i++) {
m_points[i] = ll2Mercator( points[i][0], points[i][1] );
}
return m_points;
}
function convertMercator2LL(m_points) {
var points = [];
for(var i=0;i<m_points.length;i++) {
points[i] = Mercator2ll( m_points[i][0], m_points[i][1] );;
}
return points;
}
function pointsTranslate(points,xoff,yoff) {
var newpoints = [];
for(var i=0;i<points.length;i++) {
newpoints[i] = [ points[i][0] + xoff, points[i][1] + yoff ];
}
return(newpoints);
}
// note [0] elements are lng [1] are lat
function getBoundingBox(arr) {
var ne = [ arr[0][0] , arr[0][1] ];
var sw = [ arr[0][0] , arr[0][1] ];
for(var i=1;i<arr.length;i++) {
if(ne[0] < arr[i][0]) ne[0] = arr[i][0];
if(ne[1] < arr[i][1]) ne[1] = arr[i][1];
if(sw[0] > arr[i][0]) sw[0] = arr[i][0];
if(sw[1] > arr[i][1]) sw[1] = arr[i][1];
}
return( [ sw, ne ] );
}
function pointsRotate(points, cx, cy, angle){
var radians = angle * Math.PI / 180.0;
var cos = Math.cos(radians);
var sin = Math.sin(radians);
var newpoints = [];
function rotate(x, y) {
var nx = cx + (cos * (x - cx)) + (-sin * (y - cy));
var ny = cy + (cos * (y - cy)) + (sin * (x - cx));
return [nx, ny];
}
for(var i=0;i<points.length;i++) {
newpoints[i] = rotate(points[i][0],points[i][1]);
}
return(newpoints);
}
function convertTrapezoidToPath(trap) {
return([
[trap.Tl.lng, trap.Tl.lat], [trap.Tr.lng, trap.Tr.lat],
[trap.Br.lng, trap.Br.lat], [trap.Bl.lng, trap.Bl.lat],
[trap.Tl.lng, trap.Tl.lat] ]);
}
function getViewTrapezoid() {
var canvas = map.getCanvas();
var trap = {};
trap.Tl = map.unproject([0,0]);
trap.Tr = map.unproject([canvas.offsetWidth,0]);
trap.Br = map.unproject([canvas.offsetWidth,canvas.offsetHeight]);
trap.Bl = map.unproject([0,canvas.offsetHeight]);
return(trap);
}
function pointsScale(points,cx,cy, scale) {
var newpoints = []
for(var i=0;i<points.length;i++) {
newpoints[i] = [ cx + (points[i][0]-cx)*scale, cy + (points[i][1]-cy)*scale ];
}
return(newpoints);
}
var id = 1000;
function convertMercator2LLAndDraw(m_points, color, thickness) {
var newpoints = convertMercator2LL(m_points);
addLayerToMap("id"+id++, newpoints, color, thickness);
}
function pointsInTrapezoid(points,yt,yb,xtl,xtr,xbl,xbr) {
var str = "";
var xleft = xtr;
var xright = xtl;
var yh = yt-yb;
var sloperight = (xtr-xbr)/yh;
var slopeleft = (xbl-xtl)/yh;
var flag = true;
var leftdiff = xtr - xtl;
var rightdiff = xtl - xtr;
var tmp = [ [xtl, yt], [xtr, yt], [xbr,yb], [xbl,yb], [xtl,yt] ];
// convertMercator2LLAndDraw(tmp, '#ff0', 2);
function pointInTrapezoid(x,y) {
var xsloperight = xbr + sloperight * (y-yb);
var xslopeleft = xbl - slopeleft * (y-yb);
if((x - xsloperight) > rightdiff) {
rightdiff = x - xsloperight;
xright = x;
}
if((x - xslopeleft) < leftdiff) {
leftdiff = x - xslopeleft;
xleft = x;
}
if( (y<yb) || (y > yt) ) {
console.log("y issue");
}
else if(xsloperight < x) {
console.log("sloperight");
}
else if(xslopeleft > x) {
console.log("slopeleft");
}
else return(true);
return(false);
}
for(var i=0;i<points.length;i++) {
if(pointInTrapezoid(points[i][0],points[i][1])) {
str += "1";
}
else {
str += "0";
flag = false;
}
}
if(flag == false) console.log(str);
return({ leftdiff: leftdiff, rightdiff: rightdiff });
}
var viewcnt = 0;
function calculateView(trap, points, center) {
var bbox = getBoundingBox(points);
var bbox_height = Math.abs(bbox[0][1] - bbox[1][1]);
var view = {};
// move the view trapezoid so the path is at the far edge of the view
var viewTop = trap[0][1];
var pointsTop = bbox[1][1];
var yoff = -(viewTop - pointsTop);
var extents = pointsInTrapezoid(points,trap[0][1]+yoff,trap[3][1]+yoff,trap[0][0],trap[1][0],trap[3][0],trap[2][0]);
// center the view trapezoid horizontally around the path
var mid = (extents.leftdiff - extents.rightdiff) / 2;
var trap2 = pointsTranslate(trap,extents.leftdiff-mid,yoff);
view.cx = trap2[5][0];
view.cy = trap2[5][1];
var w = trap[1][0] - trap[0][0];
var h = trap[1][1] - trap[3][1];
// calculate the scale to fit the trapezoid to the path
view.scale = (w-mid*2)/w;
if(bbox_height > h*view.scale) {
// if the path is taller than the trapezoid then we need to make it larger
view.scale = bbox_height / h;
}
view.ranking = view.scale;
var trap3 = pointsScale(trap2,(trap2[0][0]+trap2[1][0])/2,trap2[0][1],view.scale);
w = trap3[1][0] - trap3[0][0];
h = trap3[1][1] - trap3[3][1];
view.cx = trap3[5][0];
view.cy = trap3[5][1];
// if the path is not as tall as the view then we should center it vertically for the best looking result
// this involves both a scale and a translate
if(h > bbox_height) {
var space = h - bbox_height;
var scale_mul = (h+space)/h;
view.scale = scale_mul * view.scale;
cy_offset = space/2;
trap3 = pointsScale(trap3,view.cx,view.cy,scale_mul);
trap3 = pointsTranslate(trap3,0,cy_offset);
view.cy = trap3[5][1];
}
return(view);
}
function thenCalculateOptimalView(path) {
var center = map.getCenter();
var trapezoid = getViewTrapezoid();
var trapezoid_path = convertTrapezoidToPath(trapezoid);
trapezoid_path[5] = [center.lng, center.lat];
var view = {};
//addLayerToMap("start", trapezoid_path, '#00F', 2);
// get the mercator versions of the points so that we can use them for rotations
var m_center = ll2Mercator(center.lng,center.lat);
var m_path = convertLL2Mercator(path);
var m_trapezoid_path = convertLL2Mercator(trapezoid_path);
// try all angles to see which fits best
for(var angle=0;angle<360;angle+=1) {
var m_newpoints = pointsRotate(m_path, m_center[0], m_center[1], angle);
var thisview = calculateView(m_trapezoid_path, m_newpoints, m_center);
if(!view.hasOwnProperty('ranking') || (view.ranking > thisview.ranking)) {
view.scale = thisview.scale;
view.cx = thisview.cx;
view.cy = thisview.cy;
view.angle = angle;
view.ranking = thisview.ranking;
}
}
// need the distance for the (cx, cy) from the current north up position
var cx_offset = view.cx - m_center[0];
var cy_offset = view.cy - m_center[1];
var rotated_offset = pointsRotate([[cx_offset,cy_offset]],0,0,-view.angle);
map.flyTo({ bearing: view.angle, speed:0.00001 });
// once bearing is set, adjust to tightest fit
waitForMapMoveCompletion(function () {
var center2 = map.getCenter();
var m_center2 = ll2Mercator(center2.lng,center2.lat);
m_center2[0] += rotated_offset[0][0];
m_center2[1] += rotated_offset[0][1];
var ll_center2 = Mercator2ll(m_center2[0],m_center2[1]);
map.easeTo({
center:[ll_center2[0],ll_center2[1]],
zoom : map.getZoom() });
console.log("bearing:"+view.angle+ " scale:"+view.scale+" center: ("+ll_center2[0]+","+ll_center2[1]+")");
// draw the tight fitting trapezoid for reference purposes
var m_trapR = pointsRotate(m_trapezoid_path,m_center[0],m_center[1],-view.angle);
var m_trapRS = pointsScale(m_trapR,m_center[0],m_center[1],view.scale);
var m_trapRST = pointsTranslate(m_trapRS,m_center2[0]-m_center[0],m_center2[1]-m_center[1]);
convertMercator2LLAndDraw(m_trapRST,'#f0f',4);
});
}
function waitForMapMoveCompletion(func) {
if(map.isMoving())
setTimeout(function() { waitForMapMoveCompletion(func); },250);
else
func();
}
function thenSetPitch(path,pitch) {
map.flyTo({ pitch:pitch } );
waitForMapMoveCompletion(function() { thenCalculateOptimalView(path); })
}
function displayFittedView(path,pitch) {
var bbox = getBoundingBox(path);
var path_cx = (bbox[0][0]+bbox[1][0])/2;
var path_cy = (bbox[0][1]+bbox[1][1])/2;
// start with a 'north up' view
map = new mapboxgl.Map({
container: 'map',
style: 'mapbox://styles/mapbox/streets-v9',
center: [path_cx, path_cy],
zoom: 12
});
// use the bounding box to get into the right zoom range
map.on('load', function () {
addLayerToMap("path",path,'#888',8);
map.fitBounds(bbox);
waitForMapMoveCompletion(function() { thenSetPitch(path,pitch); });
});
}
window.onload = function(e) {
displayFittedView(myPath,60);
}
body { margin:0; padding:0; }
#map { position:absolute; top:0; bottom:0; width:100%; }
<script src='https://api.tiles.mapbox.com/mapbox-gl-js/v0.37.0/mapbox-gl.js'></script>
<link href='https://api.tiles.mapbox.com/mapbox-gl-js/v0.37.0/mapbox-gl.css' rel='stylesheet' />
<div id='map'></div>
关于javascript - mapbox-gl-js:针对给定间距将可见区域和方位调整到给定线,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/43713462/
我将 Bootstrap 与 css 和 java 脚本结合使用。在不影响前端代码的情况下,我真的很难在css中绘制这个背景。在许多问题中,人们将宽度和高度设置为 0%。但是由于我的导航栏,我不能使用
我正在用 c 编写一个程序来读取文件的内容。代码如下: #include void main() { char line[90]; while(scanf("%79[^\
我想使用 javascript 获取矩阵数组的所有对 Angular 线。假设输入输出如下: input = [ [1,2,3], [4,5,6], [7,8,9], ] output =
可以用pdfmake绘制lines,circles和other shapes吗?如果是,是否有documentation或样本?我想用jsPDF替换pdfmake。 最佳答案 是的,有可能。 pdfm
我有一个小svg小部件,其目的是显示角度列表(参见图片)。 现在,角度是线元素,仅具有笔触,没有填充。但是现在我想使用一种“内部填充”颜色和一种“笔触/边框”颜色。我猜想line元素不能解决这个问题,
我正在为带有三角对象的 3D 场景编写一个非常基本的光线转换器,一切都工作正常,直到我决定尝试从场景原点 (0/0/0) 以外的点转换光线。 但是,当我将光线原点更改为 (0/1/0) 时,相交测试突
这个问题已经有答案了: Why do people write "#!/usr/bin/env python" on the first line of a Python script? (22 个回
如何使用大约 50 个星号 * 并使用 for 循环绘制一条水平线?当我尝试这样做时,结果是垂直(而不是水平)列出 50 个星号。 public void drawAstline() { f
这是一个让球以对角线方式下降的 UI,但球保持静止;线程似乎无法正常工作。你能告诉我如何让球移动吗? 请下载一个球并更改目录,以便程序可以找到您的球的分配位置。没有必要下载足球场,但如果您愿意,也可以
我在我的一个项目中使用 Jmeter 和 Ant,当我们生成报告时,它会在报告中显示 URL、#Samples、失败、成功率、平均时间、最短时间、最长时间。 我也想在报告中包含 90% 的时间线。 现
我有一个不寻常的问题,希望有人能帮助我。我想用 Canvas (android) 画一条 Swing 或波浪线,但我不知道该怎么做。它将成为蝌蚪的尾部,所以理想情况下我希望它的形状更像三角形,一端更大
这个问题已经有答案了: Checking Collision of Shapes with JavaFX (1 个回答) 已关闭 8 年前。 我正在使用 JavaFx 8 库。 我的任务很简单:我想检
如何按编号的百分比拆分文件。行数? 假设我想将我的文件分成 3 个部分(60%/20%/20% 部分),我可以手动执行此操作,-_-: $ wc -l brown.txt 57339 brown.tx
我正在努力实现这样的目标: 但这就是我设法做到的。 你能帮我实现预期的结果吗? 更新: 如果我删除 bootstrap.css 依赖项,问题就会消失。我怎样才能让它与 Bootstrap 一起工作?
我目前正在构建一个网站,但遇到了 transform: scale 的问题。我有一个按钮,当用户将鼠标悬停在它上面时,会发生两件事: 背景以对 Angular 线“扫过” 按钮标签颜色改变 按钮稍微变
我需要使用直线和仿射变换绘制大量数据点的图形(缩放图形以适合 View )。 目前,我正在使用 NSBezierPath,但我认为它效率很低(因为点在绘制之前被复制到贝塞尔路径)。通过将我的数据切割成
我正在使用基于 SVM 分类的 HOG 特征检测器。我可以成功提取车牌,但提取的车牌除了车牌号外还有一些不必要的像素/线。我的图像处理流程如下: 在灰度图像上应用 HOG 检测器 裁剪检测到的区域 调
我有以下图片: 我想填充它的轮廓(即我想在这张图片中填充线条)。 我尝试了形态学闭合,但使用大小为 3x3 的矩形内核和 10 迭代并没有填满整个边界。我还尝试了一个 21x21 内核和 1 迭代,但
我必须找到一种算法,可以找到两组数组之间的交集总数,而其中一个数组已排序。 举个例子,我们有这两个数组,我们向相应的数字画直线。 这两个数组为我们提供了总共 7 个交集。 有什么样的算法可以帮助我解决
简单地说 - 我想使用透视投影从近裁剪平面绘制一条射线/线到远裁剪平面。我有我认为是使用各种 OpenGL/图形编程指南中描述的方法通过单击鼠标生成的正确标准化的世界坐标。 我遇到的问题是我的光线似乎
我是一名优秀的程序员,十分优秀!