- android - RelativeLayout 背景可绘制重叠内容
- android - 如何链接 cpufeatures lib 以获取 native android 库?
- java - OnItemClickListener 不起作用,但 OnLongItemClickListener 在自定义 ListView 中起作用
- java - Android 文件转字符串
如何在 Swift 中打印二叉树,以便输入 79561
打印如下输出:
7
/ \
5 9
/ \
1 6
我尝试使用 For Loops
和 If Statements
来安排一些代码,但没有成功。我的代码是:
import UIKit
//Variable "node" used only to arrange it in output.
var node = "0"
var space = " "
var linkLeft = "/"
var linkRight = "\\"
var str = "Hello, playground"
var height = 6
var width = height * 2 + 1
print()
//Height
for h in 1...height {
//Width
for w in 1...width {
switch h {
case 1:
if(w == width/2 + h) {
print(node, terminator: "")
} else {
print(space, terminator: "")
}
if (w == width) {
print()
}
case 2:
//print(linkLeft, terminator: "")
if(w == width/3 + h) {
print(linkLeft, terminator: "")
} else if(w == width/3 + h + 4) {
print(linkRight, terminator: "")
} else {
print(space, terminator: "")
}
if (w == width) {
print()
}
case 3:
if(w == width/5 + h) {
print(node, terminator: "")
} else if(w == width/h + h){
print(node, terminator: "")
} else {
print(space, terminator: "")
}
if (w == width) {
print()
}
break
default:
break
}
}
}
我尝试使用两个 For Loops
,一个用于高度,另一个用于宽度。但如果节点数量发生变化,它就不起作用。现在我只是尝试安排链接
(/
和\
)、节点
和空格的位置,所以它是不工作。有没有办法做到这一点?
最佳答案
首先你必须定义一个层次树结构(类),允许递归遍历树节点。只要它能够提供描述性字符串并访问其左右子节点,您如何实现它并不重要。
例如(我将其用于测试目的):
class TreeNode
{
var value : Int
var left : TreeNode? = nil
var right : TreeNode? = nil
init(_ rootValue:Int)
{ value = rootValue }
@discardableResult
func addValue( _ newValue:Int) -> TreeNode
{
if newValue == value // exclude duplicate entries
{ return self }
else if newValue < value
{
if let newNode = left?.addValue(newValue)
{ return newNode }
left = TreeNode(newValue)
return left!
}
else
{
if let newNode = right?.addValue(newValue)
{ return newNode }
right = TreeNode(newValue)
return right!
}
}
}
然后您可以创建一个递归函数来获取要打印的行。每条线都需要了解较低级别的线,因此需要自下而上构建线列表。递归是实现这种相互依赖的一种简单方法。
这是一个适用于任何二叉树类的通用函数示例。它需要一个根节点和一个函数(或闭包)来访问节点的描述和左/右子节点:
public func treeString<T>(_ node:T, reversed:Bool=false, isTop:Bool=true, using nodeInfo:(T)->(String,T?,T?)) -> String
{
// node value string and sub nodes
let (stringValue, leftNode, rightNode) = nodeInfo(node)
let stringValueWidth = stringValue.count
// recurse to sub nodes to obtain line blocks on left and right
let leftTextBlock = leftNode == nil ? []
: treeString(leftNode!,reversed:reversed,isTop:false,using:nodeInfo)
.components(separatedBy:"\n")
let rightTextBlock = rightNode == nil ? []
: treeString(rightNode!,reversed:reversed,isTop:false,using:nodeInfo)
.components(separatedBy:"\n")
// count common and maximum number of sub node lines
let commonLines = min(leftTextBlock.count,rightTextBlock.count)
let subLevelLines = max(rightTextBlock.count,leftTextBlock.count)
// extend lines on shallower side to get same number of lines on both sides
let leftSubLines = leftTextBlock
+ Array(repeating:"", count: subLevelLines-leftTextBlock.count)
let rightSubLines = rightTextBlock
+ Array(repeating:"", count: subLevelLines-rightTextBlock.count)
// compute location of value or link bar for all left and right sub nodes
// * left node's value ends at line's width
// * right node's value starts after initial spaces
let leftLineWidths = leftSubLines.map{$0.count}
let rightLineIndents = rightSubLines.map{$0.prefix{$0==" "}.count }
// top line value locations, will be used to determine position of current node & link bars
let firstLeftWidth = leftLineWidths.first ?? 0
let firstRightIndent = rightLineIndents.first ?? 0
// width of sub node link under node value (i.e. with slashes if any)
// aims to center link bars under the value if value is wide enough
//
// ValueLine: v vv vvvvvv vvvvv
// LinkLine: / \ / \ / \ / \
//
let linkSpacing = min(stringValueWidth, 2 - stringValueWidth % 2)
let leftLinkBar = leftNode == nil ? 0 : 1
let rightLinkBar = rightNode == nil ? 0 : 1
let minLinkWidth = leftLinkBar + linkSpacing + rightLinkBar
let valueOffset = (stringValueWidth - linkSpacing) / 2
// find optimal position for right side top node
// * must allow room for link bars above and between left and right top nodes
// * must not overlap lower level nodes on any given line (allow gap of minSpacing)
// * can be offset to the left if lower subNodes of right node
// have no overlap with subNodes of left node
let minSpacing = 2
let rightNodePosition = zip(leftLineWidths,rightLineIndents[0..<commonLines])
.reduce(firstLeftWidth + minLinkWidth)
{ max($0, $1.0 + minSpacing + firstRightIndent - $1.1) }
// extend basic link bars (slashes) with underlines to reach left and right
// top nodes.
//
// vvvvv
// __/ \__
// L R
//
let linkExtraWidth = max(0, rightNodePosition - firstLeftWidth - minLinkWidth )
let rightLinkExtra = linkExtraWidth / 2
let leftLinkExtra = linkExtraWidth - rightLinkExtra
// build value line taking into account left indent and link bar extension (on left side)
let valueIndent = max(0, firstLeftWidth + leftLinkExtra + leftLinkBar - valueOffset)
let valueLine = String(repeating:" ", count:max(0,valueIndent))
+ stringValue
let slash = reversed ? "\\" : "/"
let backSlash = reversed ? "/" : "\\"
let uLine = reversed ? "¯" : "_"
// build left side of link line
let leftLink = leftNode == nil ? ""
: String(repeating: " ", count:firstLeftWidth)
+ String(repeating: uLine, count:leftLinkExtra)
+ slash
// build right side of link line (includes blank spaces under top node value)
let rightLinkOffset = linkSpacing + valueOffset * (1 - leftLinkBar)
let rightLink = rightNode == nil ? ""
: String(repeating: " ", count:rightLinkOffset)
+ backSlash
+ String(repeating: uLine, count:rightLinkExtra)
// full link line (will be empty if there are no sub nodes)
let linkLine = leftLink + rightLink
// will need to offset left side lines if right side sub nodes extend beyond left margin
// can happen if left subtree is shorter (in height) than right side subtree
let leftIndentWidth = max(0,firstRightIndent - rightNodePosition)
let leftIndent = String(repeating:" ", count:leftIndentWidth)
let indentedLeftLines = leftSubLines.map{ $0.isEmpty ? $0 : (leftIndent + $0) }
// compute distance between left and right sublines based on their value position
// can be negative if leading spaces need to be removed from right side
let mergeOffsets = indentedLeftLines
.map{$0.count}
.map{leftIndentWidth + rightNodePosition - firstRightIndent - $0 }
.enumerated()
.map{ rightSubLines[$0].isEmpty ? 0 : $1 }
// combine left and right lines using computed offsets
// * indented left sub lines
// * spaces between left and right lines
// * right sub line with extra leading blanks removed.
let mergedSubLines = zip(mergeOffsets.enumerated(),indentedLeftLines)
.map{ ( $0.0, $0.1, $1 + String(repeating:" ", count:max(0,$0.1)) ) }
.map{ $2 + String(rightSubLines[$0].dropFirst(max(0,-$1))) }
// Assemble final result combining
// * node value string
// * link line (if any)
// * merged lines from left and right sub trees (if any)
let treeLines = [leftIndent + valueLine]
+ (linkLine.isEmpty ? [] : [leftIndent + linkLine])
+ mergedSubLines
return (reversed && isTop ? treeLines.reversed(): treeLines)
.joined(separator:"\n")
}
要实际打印,您需要为该函数提供您的类的节点和一个闭包以访问节点描述和左右子节点。
extension TreeNode
{
var asString:String { return treeString(self){("\($0.value)",$0.left,$0.right)} }
}
var root = TreeNode(7)
root.addValue(9)
root.addValue(5)
root.addValue(6)
root.addValue(1)
print(root.asString)
// 7
// / \
// 5 9
// / \
// 1 6
//
root = TreeNode(80)
root.addValue(50)
root.addValue(90)
root.addValue(10)
root.addValue(60)
root.addValue(30)
root.addValue(70)
root.addValue(55)
root.addValue(5)
root.addValue(35)
root.addValue(85)
print(root.asString)
// 80
// ___/ \___
// 50 90
// __/ \__ /
// 10 60 85
// / \ / \
// 5 30 55 70
// \
// 35
//
[编辑] 改进逻辑以在右侧比左侧更深的树上使用更少的空间。清理代码并添加注释以解释其工作原理。
//
// 12
// / \
// 10 50
// / __/ \__
// 5 30 90
// \ /
// 35 70
// / \
// 60 85
// /
// 55
//
// 12
// / \
// 10 30
// / \
// 5 90
// /
// 85
// /
// 70
// /
// 55
// /
// 48
// /
// 45
// /
// 40
// /
// 35
//
[EDIT2] 使函数具有通用性和适应性解释。
使用泛型函数,数据甚至不需要在实际的树结构中。
例如,您可以打印一个包含堆树的数组:
extension Array
{
func printHeapTree(reversed:Bool = false)
{
let tree = treeString( 0, reversed:reversed )
{
let left = { $0 < self.count ? $0 : nil}($0 * 2 + 1)
let right = { $0 < self.count ? $0 : nil}($0 * 2 + 2)
return ( "\(self[$0])", left, right )
}
print(tree)
}
}
let values = [7,5,9,1,6]
values.printHeapTree()
// 7
// / \
// 5 9
// / \
// 1 6
let family = [ "Me","Paul","Rosa","Vincent","Jody","John","Kate"]
family.printHeapTree()
// Me
// ___/ \___
// Paul Rosa
// / \ / \
// Vincent Jody John Kate
但对于最后一个例子,家谱通常是颠倒的。因此,我调整了函数以允许打印反向树:
family.printHeapTree(reversed:true)
// Vincent Jody John Kate
// \ / \ /
// Paul Rosa
// ¯¯¯\ /¯¯¯
// Me
[EDIT3] 添加条件以根据 Emm 的请求从示例类 (TreeNode) 中的树中排除重复条目
[EDIT4] 更改了 mergedSubLines 的公式,以便它可以在实际项目中编译(正在 Playground 上进行测试)。
[EDIT5] 对 Swift4 进行了细微调整,增加了打印反向树的能力,将数组示例更改为堆树。
关于swift - 如何在控制台中 “draw” 二叉树?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/43898440/
我是一名优秀的程序员,十分优秀!