- android - RelativeLayout 背景可绘制重叠内容
- android - 如何链接 cpufeatures lib 以获取 native android 库?
- java - OnItemClickListener 不起作用,但 OnLongItemClickListener 在自定义 ListView 中起作用
- java - Android 文件转字符串
除其他来源外,我还使用 Stackoverflow 上的各种帖子,尝试实现我自己的 PHP 分类器,以将推文分类为正面、中性和负面类别。在编码之前,我需要弄清楚流程。我的思路和例子如下:
p(class) * p(words|class)
Bayes theorem: p(class|words) = ------------------------- with
p(words)
assumption that p(words) is the same for every class leads to calculating
arg max p(class) * p(words|class) with
p(words|class) = p(word1|class) * p(word2|topic) * ... and
p(class) = #words in class / #words in total and
p(word, class) 1
p(word|class) = -------------- = p(word, class) * -------- =
p(class) p(class)
#times word occurs in class #words in total #times word occurs in class
--------------------------- * --------------- = ---------------------------
#words in total #words in class #words in class
Example:
------+----------------+-----------------+
class | words | #words in class |
------+----------------+-----------------+
pos | happy win nice | 3 |
neu | neutral middle | 2 |
neg | sad loose bad | 3 |
------+----------------+-----------------+
p(pos) = 3/8
p(neu) = 2/8
p(meg) = 3/8
Calculate: argmax(sad loose)
p(sad loose|pos) = p(sad|pos) * p(loose|pos) = (0+1)/3 * (0+1)/3 = 1/9
p(sad loose|neu) = p(sad|neu) * p(loose|neu) = (0+1)/3 * (0+1)/3 = 1/9
p(sad loose|neg) = p(sad|neg) * p(loose|neg) = 1/3 * 1/3 = 1/9
p(pos) * p(sad loose|pos) = 3/8 * 1/9 = 0.0416666667
p(neu) * p(sad loose|neu) = 2/8 * 1/9 = 0.0277777778
p(neg) * p(sad loose|neg) = 3/8 * 1/9 = 0.0416666667 <-- should be 100% neg!
如您所见,我已经用正面(“happy win nice”)、中性(“neutral middle”)和负面(“sad loose bad”)推文“训练”了分类器。为了防止由于所有类别中都缺少一个单词而导致概率为零的问题,我使用了 LaPlace(或 ädd one")平滑,请参阅“(0+1)”。
我基本上有两个问题:
最佳答案
有两个主要元素需要改进您的推理。
首先,你应该改进你的平滑方法:
因此,使用您定义的概率函数(这可能不是最合适的,见下文):
p(sad loose|pos) = (0+1)/(3+8) * (0+1)/(3+8) = 1/121
p(sad loose|neu) = (0+1)/(3+8) * (0+1)/(3+8) = 1/121
p(sad loose|neg) = (1+1)/(3+8) * (1+1)/(3+8) = 4/121 <-- would become argmax
此外,首先计算概率的一种更常见的方法是:
(number of tweets in class containing term c) / (total number of tweets in class)
例如,在上面给出的有限训练集中,忽略平滑,p(sad|pos) = 0/1 = 0,p(sad|neg) = 1/1 = 1。当训练集大小增加时,这些数字会更有意义。例如如果你有 10 条关于负面类别的推文,其中 4 条出现“悲伤”,那么 p(sad|neg) 将是 4/10。
关于朴素贝叶斯算法输出的实际数字:你不应该期望算法为每个类分配实际概率;相反,类别顺序更为重要。具体来说,使用 argmax 会给你算法对类的最佳猜测,但不是它的概率。为 NB 结果分配概率是另一回事;例如,查看 article讨论这个问题。
关于php - 使用朴素贝叶斯分类器对推文进行分类 : some problems,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/9996327/
我正在尝试使用 Pandas 和 scikit-learn 在 Python 中执行分类。我的数据集包含文本变量、数值变量和分类变量的混合。 假设我的数据集如下所示: Project Cost
我想要一种图形化且有吸引力的方式来表示二进制数据的列总和,而不是表格格式。我似乎无法让它发挥作用,尽管有人会认为这将是一次上篮。 数据看起来像这样(我尝试创建一个可重现的示例,但无法让代码填充 0 和
我有一个简单的类别模型: class Category(models.Model): name = models.CharField(max_length=200) slug = mo
我正在开发一个知识系统,当用户进入一道菜时,该系统可以返回酒。我的想法是根据用户的输入为每个葡萄酒类别添加分数,然后显示最适合的葡萄酒类别的前 3 个。例如,如果有人输入鱼,那么知识库中的所有红葡萄酒
我目前正在研究流失问题的预测模型。 每当我尝试运行以下模型时,都会收到此错误:至少一个类级别不是有效的 R 变量名称。这将在生成类概率时导致错误,因为变量名称将转换为 X0、X1。请使用可用作有效 R
如何对栅格重新分类(子集)r1 (与 r2 具有相同的尺寸和范围)基于 r2 中的以下条件在给定的示例中。 条件: 如果网格单元格值为 r2是 >0.5 ,保留>0.5中对应的值以及紧邻0.5个值的相
我想知道在 java 中进行以下分类的最佳方法是什么。例如,我们有一个简单的应用程序,其分类如下: 空气 -----电机类型 -----------平面对象 -----非电机型 -----------
这是一个非常基本的示例。但我正在做一些数据分析,并且不断发现自己编写非常类似的 SQL 计数查询来生成概率表。 我的表被定义为值 0 表示事件未发生,而值 1 表示事件确实发生。 > sqldf(
假设我有一组护照图像。我正在开展一个项目,我必须识别每本护照上的姓名,并最终将该对象转换为文本。 对于标签(或分类(我认为是初学者))的第一部分,每本护照上都有姓名,我该怎么做? 我可以使用哪些技术/
我有这张图片: 我想做的是在花和树之间对这张图片进行分类,这样我就可以找到图片中被树木覆盖的区域,以及被那些花覆盖的区域。 我在想这可能是某种 FFT 问题,但我不确定它是如何工作的。单个花的 FFT
我的数据集有 32 个分类变量和一个数值连续变量(sales_volume) 首先,我使用单热编码 (pd.get_dummies) 将分类变量转换为二进制,现在我有 1294 列,因为每一列都有多个
我正在尝试学习一些神经网络来获得乐趣。我决定尝试从 kaggle 的数据集中对一些神奇宝贝传奇卡进行分类。我阅读了文档并遵循了机器学习掌握指南,同时阅读了媒体以尝试理解该过程。 我的问题/疑问:我尝试
我目前正在进行推文情绪分析,并且有几个关于步骤的正确顺序的问题。请假设数据已经过相应的预处理和准备。所以这就是我将如何进行: 使用 train_test_split(80:20 比例)停止测试数据集。
一些上下文:Working with text classification and big sparse matrices in R 我一直在研究 text2vec 的文本多类分类问题。包装和 ca
数据 我有以下(简化的)数据集,我们称之为 df从现在开始: species rank value 1
我一直在尝试创建一个 RNN。我总共有一个包含 1661 个单独“条目”的数据集,每个条目中有 158 个时间序列坐标。 以下是一个条目的一小部分: 0.00000000e+00 1.9260968
我有一个关于机器学习的分类和回归问题。第一个问题,以下数据集 http://it.tinypic.com/view.php?pic=oh3gj7&s=8#.VIjhRDGG_lF 我们可以说,数据集是
我用1~200个数据作为训练数据,201~220个作为测试数据格式如下:3 个类(类 1、类 2、类 3)和 20 个特征 2 1:100 2:96 3:88 4:94 5:96 6:94 7:72
我有 2 个基于多个数字特征(例如 v1….v20)的输出类别(好和差)。 如果 v1、v2、v3 和 v4 为“高”,则该类别为“差”。如果 v1、v2、v3 和 v4 为“低”,则该类别为“好”
我遇到了使用朴素贝叶斯将文档分类为各种类别问题的问题。 实际上我想知道 P(C) 或我们最初掌握的类别的先验概率会随着时间的推移而不断变化。例如,对于类(class) - [音乐、体育、新闻] 初始概
我是一名优秀的程序员,十分优秀!