- Java 双重比较
- java - 比较器与 Apache BeanComparator
- Objective-C 完成 block 导致额外的方法调用?
- database - RESTful URI 是否应该公开数据库主键?
我的类(class)有以下锁定机制。当我运行这个程序时,一个线程不断地获取和重新获取锁,而没有给任何其他线程获取锁的机会,导致饥饿。我如何重构我的锁定机制,以便一旦一个线程放弃一个锁,另一个线程获得它?我希望看到其他线程获取锁,而不必等到拥有锁的线程停止运行。
private final ReentrantLock lock = new ReentrantLock();
private final Condition condition = lock.newCondition();
private final Map<Integer, Long> locksMap = new HashMap<Integer, Long>();
/** {@inheritDoc} */
@Override
public long lock(int recNo) throws RecordNotFoundException {
ValidationUtils.checkNegative(recNo);
lock.lock();
long id = Thread.currentThread().getId();
try {
while (locksMap.get(recNo) != null) {
try {
System.out.println("Thread " + id + " is waiting.");
condition.await();
}
catch (InterruptedException e) {
LOGGER.log(Level.SEVERE, e.getMessage());
return -1;
}
}
Long prevValue = locksMap.put(recNo, id);
if (prevValue != null) {
String msg = "Expected no value for " + recNo + " but was ";
msg += prevValue + ".";
throw new IllegalStateException(msg);
}
System.out.println("Thread " + id + " has the lock.");
}
finally {
lock.unlock();
}
return id;
}
/** {@inheritDoc} */
@Override
public void unlock(int recNo, long cookie) throws RecordNotFoundException, SecurityException {
ValidationUtils.checkNegative(recNo);
if (cookie < 0) {
throw new IllegalArgumentException("cookie is negative.");
}
lock.lock();
try {
if (locksMap.get(recNo) == cookie) {
locksMap.remove(recNo);
}
else {
String msg = "Wrong lock cookie. Expected " + locksMap.get(recNo);
msg += ", was " + cookie + ".";
throw new IllegalStateException(msg);
}
long id = Thread.currentThread().getId();
System.out.println("Thread " + id + " no longer has the lock.");
condition.signalAll();
}
finally {
lock.unlock();
}
}
/**
* Tests the locking mechanism in this class.
*
* @param args None.
*/
public static void main(String... args) {
ExecutorService threadPool = Executors.newFixedThreadPool(5);
final CountDownLatch latch = new CountDownLatch(5);
final Data data = new Data();
Runnable task = new Runnable() {
@Override
public void run() {
try {
for (int index = 0; index < 10; index++) {
long cookie = data.lock(1);
Thread.sleep(1000); // Do something.
data.unlock(1, cookie);
}
}
catch (SecurityException e) {
e.getStackTrace();
}
catch (RecordNotFoundException e) {
e.getStackTrace();
}
catch (InterruptedException e) {
e.getStackTrace();
}
finally {
latch.countDown();
}
}
};
for (int index = 0; index < 5; index++) {
threadPool.execute(task);
}
try {
latch.await();
}
catch (InterruptedException e) {
e.getStackTrace();
}
threadPool.shutdown();
}
这是输出。请注意,只有在循环结束后,线程 9 才会停止获取锁。
Thread 9 has the lock.
Thread 13 is waiting.
Thread 12 is waiting.
Thread 11 is waiting.
Thread 10 is waiting.
Thread 9 no longer has the lock.
Thread 9 has the lock.
Thread 13 is waiting.
Thread 12 is waiting.
Thread 11 is waiting.
Thread 10 is waiting.
Thread 9 no longer has the lock.
Thread 9 has the lock.
Thread 13 is waiting.
Thread 12 is waiting.
Thread 11 is waiting.
Thread 10 is waiting.
Thread 9 no longer has the lock.
Thread 9 has the lock.
Thread 13 is waiting.
Thread 12 is waiting.
Thread 11 is waiting.
Thread 10 is waiting.
Thread 9 no longer has the lock.
Thread 9 has the lock.
Thread 13 is waiting.
Thread 12 is waiting.
Thread 11 is waiting.
Thread 10 is waiting.
Thread 9 no longer has the lock.
Thread 9 has the lock.
Thread 13 is waiting.
Thread 12 is waiting.
Thread 11 is waiting.
Thread 10 is waiting.
Thread 9 no longer has the lock.
Thread 9 has the lock.
Thread 13 is waiting.
Thread 12 is waiting.
Thread 11 is waiting.
Thread 10 is waiting.
Thread 9 no longer has the lock.
Thread 9 has the lock.
Thread 13 is waiting.
Thread 12 is waiting.
Thread 11 is waiting.
Thread 10 is waiting.
Thread 9 no longer has the lock.
Thread 9 has the lock.
Thread 13 is waiting.
Thread 12 is waiting.
Thread 11 is waiting.
Thread 10 is waiting.
Thread 9 no longer has the lock.
Thread 9 has the lock.
Thread 13 is waiting.
Thread 12 is waiting.
Thread 11 is waiting.
Thread 10 is waiting.
Thread 9 no longer has the lock.
Thread 13 has the lock.
Thread 12 is waiting.
Thread 11 is waiting.
Thread 10 is waiting.
Thread 13 no longer has the lock.
Thread 13 has the lock.
Thread 12 is waiting.
Thread 11 is waiting.
Thread 10 is waiting.
Thread 13 no longer has the lock.
Thread 13 has the lock.
Thread 12 is waiting.
Thread 11 is waiting.
Thread 10 is waiting.
Thread 13 no longer has the lock.
Thread 13 has the lock.
Thread 12 is waiting.
Thread 11 is waiting.
Thread 10 is waiting.
Thread 13 no longer has the lock.
Thread 13 has the lock.
Thread 12 is waiting.
Thread 11 is waiting.
Thread 10 is waiting.
Thread 13 no longer has the lock.
Thread 13 has the lock.
Thread 12 is waiting.
Thread 11 is waiting.
Thread 10 is waiting.
Thread 13 no longer has the lock.
Thread 13 has the lock.
Thread 12 is waiting.
Thread 11 is waiting.
Thread 10 is waiting.
Thread 13 no longer has the lock.
Thread 13 has the lock.
Thread 12 is waiting.
Thread 11 is waiting.
Thread 10 is waiting.
Thread 13 no longer has the lock.
Thread 13 has the lock.
Thread 12 is waiting.
Thread 11 is waiting.
Thread 10 is waiting.
Thread 13 no longer has the lock.
Thread 13 has the lock.
Thread 12 is waiting.
Thread 11 is waiting.
Thread 10 is waiting.
Thread 13 no longer has the lock.
Thread 12 has the lock.
Thread 11 is waiting.
Thread 10 is waiting.
Thread 12 no longer has the lock.
Thread 12 has the lock.
Thread 11 is waiting.
Thread 10 is waiting.
Thread 12 no longer has the lock.
Thread 12 has the lock.
Thread 11 is waiting.
Thread 10 is waiting.
Thread 12 no longer has the lock.
Thread 12 has the lock.
Thread 11 is waiting.
Thread 10 is waiting.
Thread 12 no longer has the lock.
Thread 12 has the lock.
Thread 11 is waiting.
Thread 10 is waiting.
Thread 12 no longer has the lock.
Thread 12 has the lock.
Thread 11 is waiting.
Thread 10 is waiting.
Thread 12 no longer has the lock.
Thread 12 has the lock.
Thread 11 is waiting.
Thread 10 is waiting.
Thread 12 no longer has the lock.
Thread 12 has the lock.
Thread 11 is waiting.
Thread 10 is waiting.
Thread 12 no longer has the lock.
Thread 12 has the lock.
Thread 11 is waiting.
Thread 10 is waiting.
Thread 12 no longer has the lock.
Thread 12 has the lock.
Thread 11 is waiting.
Thread 10 is waiting.
Thread 12 no longer has the lock.
Thread 11 has the lock.
Thread 10 is waiting.
Thread 11 no longer has the lock.
Thread 11 has the lock.
Thread 10 is waiting.
Thread 11 no longer has the lock.
Thread 11 has the lock.
Thread 10 is waiting.
Thread 11 no longer has the lock.
Thread 11 has the lock.
Thread 10 is waiting.
Thread 11 no longer has the lock.
Thread 11 has the lock.
Thread 10 is waiting.
Thread 11 no longer has the lock.
Thread 11 has the lock.
Thread 10 is waiting.
Thread 11 no longer has the lock.
Thread 11 has the lock.
Thread 10 is waiting.
Thread 11 no longer has the lock.
Thread 11 has the lock.
Thread 10 is waiting.
Thread 11 no longer has the lock.
Thread 11 has the lock.
Thread 10 is waiting.
Thread 11 no longer has the lock.
Thread 11 has the lock.
Thread 10 is waiting.
Thread 11 no longer has the lock.
Thread 10 has the lock.
Thread 10 no longer has the lock.
Thread 10 has the lock.
Thread 10 no longer has the lock.
Thread 10 has the lock.
Thread 10 no longer has the lock.
Thread 10 has the lock.
Thread 10 no longer has the lock.
Thread 10 has the lock.
Thread 10 no longer has the lock.
Thread 10 has the lock.
Thread 10 no longer has the lock.
Thread 10 has the lock.
Thread 10 no longer has the lock.
Thread 10 has the lock.
Thread 10 no longer has the lock.
Thread 10 has the lock.
Thread 10 no longer has the lock.
Thread 10 has the lock.
Thread 10 no longer has the lock.
最佳答案
使用具有公平策略的ReetrantLock
。公平政策避免线程饥饿。
private final ReentrantLock lock = new ReentrantLock(true);
Java 文档
public ReentrantLock(boolean fair) Creates an instance of ReentrantLock with the given fairness policy. Parameters: fair - true if this lock will be fair; else false
关于java - 如何解决线程饥饿?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/12016186/
@Cacheable在同一类中方法调用无效 上述图片中,同一个类中genLiveBullets()方法调用同类中的queryLiveByRoom()方法,这样即便标识了Cacheable标签,
目录 @Transaction注解导致动态切换更改数据库失效 使用场景 遇到问题 解决 @Transaction
@RequestBody不能class类型匹配 在首次第一次尝试使用@RequestBody注解 开始加载字符串使用post提交(貌似只能post),加Json数据格式传输的时候,
目录 @Autowired注入static接口问题 @Autowired自动注入普通service很方便 但是如果注入static修饰的serv
目录 @RequestBody部分属性丢失 问题描述 JavaBean实现 Controller实现
目录 解决@PathVariable参数接收不完整的问题 今天遇到的问题是: 解决办法: @PathVariable接受的参
这几天在项目里面发现我使用@Transactional注解事务之后,抛了异常居然不回滚。后来终于找到了原因。 如果你也出现了这种情况,可以从下面开始排查。 1、特性 先来了解一下@Trans
概述: ? 1
场景: 在处理定时任务时,由于这几个方法都是静态方法,在aop的切面中使用@Around注解,进行监控方法调用是否有异常。 发现aop没有生效。 代码如下:
最近做项目的时候 用户提出要上传大图片 一张图片有可能十几兆 本来用的第三方的上传控件 有限制图片上传大小的设置 以前设置的是2M&nb
我已经实现了这个SCIM reference code在我们的应用程序中。 我实现的代码确实通过了此postman link中存在的所有用户测试集合。 。我的 SCIM Api 也被 Azure 接受
我一直对“然后”不被等待的行为感到困扰,我明白其原因。然而,我仍然需要绕过它。这是我的用例。 doWork(family) { return doWork1(family)
我正在尝试查找 channel 中的消息是否仍然存在,但是,我不确定如何解决 promise ,查看其他答案和文档,我可以看到它可能是通过函数实现的,但我是不完全确定如何去做。我希望能在这方面获得一些
我有以下情况: 同一工作区中的 2 个 Eclipse 项目:Apa 和 Bepa(为简洁起见,使用化名)。 Apa 项目引用(包括)Bepa 项目。 我在 Bepa 有一个类 X,具有公共(publ
这个问题已经有答案了: Why am I getting a NoClassDefFoundError in Java? (31 个回答) 已关闭 6 年前。 我正在努力学习 spring。所以我输入
我正在写一个小游戏,屏幕上有许多圆圈在移动。 我在两个线程中管理圈子,如下所示: public void run() { int stepCount = 0; int dx;
我在使用 Sympy 求解方程时遇到问题。当我运行代码时,例如: 打印(校正(10)) 我希望它打印一个数字 f。相反,它给我错误:执行中止。 def correction(r): from
好吧,我制作的每个页面都有这个问题。我不确定我做错了什么,但我所有的页面都不适用于所有分辨率。可能是因为我使用的是宽屏?大声笑我不确定,但在小于宽屏分辨率的情况下,它永远不会看起来正确。它的某些部分你
我正在尝试像这样进行一个非常简单的文化 srting 检查 if(culture.ToUpper() == "ES-ES" || "IT-IT") { //do something } else
Closed. This question is off-topic. It is not currently accepting answers. Learn more。 想改进这个问题吗?Upda
我是一名优秀的程序员,十分优秀!