gpt4 book ai didi

java - 在 Lucene TFIDF 中为特定条件自定义分数

转载 作者:搜寻专家 更新时间:2023-11-01 03:36:57 25 4
gpt4 key购买 nike

我有一个程序接受输入查询并根据其 TFIDF 得分对相似文档进行排名。问题是,我想添加一些关键字并将它们也视为“输入”。这些关键字对于每个查询都是不同的。

例如,如果查询是"Logic Based Knowledge Representation",则单词如下:

Level 0 keywords: [logic, base, knowledg, represent]

Level 1 keywords: [tempor, modal, logic, resolut, method, decis, problem,
reason, revis, hybrid, represent]

Level 2 keywords: [classif, queri, process, techniqu, candid, semant, data,
model, knowledg, base, commun, softwar, engin, subsumpt,
kl, undecid, classic, structur, object, field]

我想以不同的方式对待评分,例如,对于文档中等于 0 级单词的术语,我想将分数乘以 1。对于文档中等于 1 级单词的术语,乘以得分为0.8。最后,对于文档中等于第 2 级单词的术语,将分数乘以 0.64。

我的目的是扩展输入查询,同时确保包含更多级别 0 关键字的文档被视为更重要,而包含级别 1 和 2 关键字的文档较少(即使输入已扩展)。我没有把它包括在我的程序中。到目前为止,我的程序只计算查询中所有文档的 TFIDF 分数并对结果进行排名:

public class Ranking{

private static int maxHits = 2000000;

public static void main(String[] args) throws Exception {
System.out.println("Enter your paper title: ");
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));

String paperTitle = null;
paperTitle = br.readLine();

// CitedKeywords ckeywords = new CitedKeywords();
// ckeywords.readDataBase(paperTitle);

String querystr = args.length > 0 ? args[0] :paperTitle;
StandardAnalyzer analyzer = new StandardAnalyzer(Version.LUCENE_42);
Query q = new QueryParser(Version.LUCENE_42, "title", analyzer)
.parse(querystr);

IndexReader reader = DirectoryReader.open(
FSDirectory.open(
new File("E:/Lucene/new_bigdataset_index")));

IndexSearcher searcher = new IndexSearcher(reader);

VSMSimilarity vsmSimiliarty = new VSMSimilarity();
searcher.setSimilarity(vsmSimiliarty);
TopDocs hits = searcher.search(q, maxHits);
ScoreDoc[] scoreDocs = hits.scoreDocs;

PrintWriter writer = new PrintWriter("E:/Lucene/result/1.txt", "UTF-8");

int counter = 0;
for (int n = 0; n < scoreDocs.length; ++n) {
ScoreDoc sd = scoreDocs[n];
float score = sd.score;
int docId = sd.doc;
Document d = searcher.doc(docId);
String fileName = d.get("title");
String year = d.get("pub_year");
String paperkey = d.get("paperkey");
System.out.printf("%s,%s,%s,%4.3f\n", paperkey, fileName, year, score);
writer.printf("%s,%s,%s,%4.3f\n", paperkey, fileName, year, score);
++counter;
}
writer.close();
}
}

--

import org.apache.lucene.index.FieldInvertState;
import org.apache.lucene.search.similarities.DefaultSimilarity;

public class VSMSimilarity extends DefaultSimilarity{

// Weighting codes
public boolean doBasic = true; // Basic tf-idf
public boolean doSublinear = false; // Sublinear tf-idf
public boolean doBoolean = false; // Boolean

//Scoring codes
public boolean doCosine = true;
public boolean doOverlap = false;

private static final long serialVersionUID = 4697609598242172599L;

// term frequency in document =
// measure of how often a term appears in the document
public float tf(int freq) {
// Sublinear tf weighting. Equation taken from [1], pg 127, eq 6.13.
if (doSublinear){
if (freq > 0){
return 1 + (float)Math.log(freq);
} else {
return 0;
}
} else if (doBoolean){
return 1;
}
// else: doBasic
// The default behaviour of Lucene is sqrt(freq),
// but we are implementing the basic VSM model
return freq;
}

// inverse document frequency =
// measure of how often the term appears across the index
public float idf(int docFreq, int numDocs) {
if (doBoolean || doOverlap){
return 1;
}
// The default behaviour of Lucene is
// 1 + log (numDocs/(docFreq+1)),
// which is what we want (default VSM model)
return super.idf(docFreq, numDocs);
}

// normalization factor so that queries can be compared
public float queryNorm(float sumOfSquaredWeights){
if (doOverlap){
return 1;
} else if (doCosine){
return super.queryNorm(sumOfSquaredWeights);
}
// else: can't get here
return super.queryNorm(sumOfSquaredWeights);
}

// number of terms in the query that were found in the document
public float coord(int overlap, int maxOverlap) {
if (doOverlap){
return 1;
} else if (doCosine){
return 1;
}
// else: can't get here
return super.coord(overlap, maxOverlap);
}

// Note: this happens an index time, which we don't take advantage of
// (too many indices!)
public float computeNorm(String fieldName, FieldInvertState state){
if (doOverlap){
return 1;
} else if (doCosine){
return super.computeNorm(state);
}
// else: can't get here
return super.computeNorm(state);
}
}

下面是我当前程序的示例输出(没有提升分数):

3086,Logic Based Knowledge Representation.,1999,5.165
33586,A Logic for the Representation of Spatial Knowledge.,1991,4.663
328937,Logic Programming for Knowledge Representation.,2007,4.663
219720,Logic for Knowledge Representation.,1984,4.663
487587,Knowledge Representation with Logic Programs.,1997,4.663
806195,Logic Programming as a Representation of Knowledge.,1983,4.663
806833,The Role of Logic in Knowledge Representation.,1983,4.663
744914,Knowledge Representation and Logic Programming.,2002,4.663
1113802,Knowledge Representation in Fuzzy Logic.,1989,4.663
984276,Logic Programming and Knowledge Representation.,1994,4.663

任何人都可以告诉我如何为我上面提到的条件添加分数吗? Lucene有提供这种功能吗?我可以将它集成到 VSMSimilarity 类中吗?

编辑:我在 Lucene 文档中找到了这个:

 public void setBoost(float b)

将此查询子句的提升设置为 b。匹配此子句的文档将(除了正常权重之外)将其分数乘以 b。

不幸的是,这似乎增加了文档级别的分数。我想做一个学期水平的分数乘法,但我还没有找到这样做的方法。因此,如果文档包含来自 level0 和 level1 的单词,则只有来自 level1 的术语将乘以 0.8,例如

最佳答案

您可以使用 Lucene 术语提升。

https://lucene.apache.org/core/5_0_0/queryparser/org/apache/lucene/queryparser/classic/package-summary.html#Boosting_a_Term

像这样扩充您的查询(假设 OR 是默认运算符)

logic base knowledge representation temporal^0.8 modal^0.8 classification^0.64...

并使用标准相似性提供者之一。

PS:在您的示例中找到了 LUCENE_42。几乎所有版本的 Lucene 都存在这个特性(我记得它在 2.4.9 中就有)。​​

关于java - 在 Lucene TFIDF 中为特定条件自定义分数,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/28470342/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com